Q=QUESTION	question_description	question_e	question_ty	question_d
<mark>A=ANSWER</mark>	answer_description	answer_ex	answer_isri	answer_po
	The Southern regional grid of india was connected with the			
Q	Central grid in		М	1
A	November 2003.		0	1
A	October 2012.		0	2
A	January 2008.		0	3
A	December 2013.		1	4
0	"One Nation, One grid" is achieved by connecting		м	1
Q	regional Grids of India to central Grid.		M 1	1
A A	5 4		1 0	1
A	6		0	3
A	3		0	4
1	What is not true for smart grid in comparison with conventional		0	7
Q	power grid?		М	1
A	two way communication		0	1
A	continuous monitoring and feedback from the grid		0	2
A	fault finding and real time pricing is possible		0	3
A	cannot support integration of renewable energy sources		1	4
Q	The Real time pricing consist of three levels as,		М	1
À	On Peak, Interim Peak and Off peak		1	1
A	Full load, No load, Half Load		0	2
A	low tariff, mid tariff, high tariff		0	3
A	communication, billing, payment		0	4
<mark>Q</mark>	CDM is defined in Protocol.		М	1
A	IEEE (IE8975)		0	1
A	TCP/IP (IP 1070)		0	2
A	Kyoto (IPCC 2007)		1	3
A	AI (2017 CX)		0	4
Q A	CDM is		М	1
A	Code Diversion multiplexing		0	1
A	Clean Development Mechanism		1	2
A	Carbon Development Management		0	3
A	Clean Division Management		0	4
Q	The Smart Grid is		М	1
A	Self healing		1	1
A	non resilient		0	2
A	one way communication structure		0	3
A	non expandable		0	4
Q	Following are the Pillars of smart grid,		М	1
٨	control system, feedback management system, PIC system,		0	1
A	emergency system Transmission antimization, domand Sida Managament		0	1
٨	Transmission optimization, demand Side Management, Distribution optimization, Asset optimization		1	2
A A	Transmission control, Fault detection, islanding		1 0	2
А	Electomechanical meter, microgrid, power line communication,		0	3
A	smooth Interoperability		0	4
Q	Self-healing is		M	1
×	its capacity to fix some failures affecting it main function to			
A	supply power.		1	1
A	its ability to communicate with sensors and control panels.		0	2
A	its capacity to manage crew in case of outage.		0	3
A	its ability to convert analog data to digital data.		0	4
Q	Following is the Disadvantage of Smart grid.		М	1

A	Privacy and Security	1	1
A	Data analysing	0	2
A	Plug and Play technique	0	3
A	Fault finding	0	4
Q	Conventional power grid systems	М	1
A	can be upgraded to the advanced system.	1	1
A	can not be upgraded to the advanced system.	0	2
A	are robust towards advancements.	0	3
A	cannot adapt new technologies	0	4
Q	The proposed biggest CDM project of the world is	М	1
A	Himachal Pradesh Reforestation	1	1
A	South India Reforestment project	0	2
A	American Carbon Emission controlling project	0	3
A	Chinese carbon Emission Diversion Project	0	4
Q	The customer domain is	М	1
Â	Where electricity is generated	0	1
A	Where electricity is consumed.	1	2
A	Where electricity is dstributed	0	3
A	Where electricity is stored.	0	4
Q	The ESI in customer domain is	М	1
À	Extended Service Interconnection	0	1
A	Electricity Service integration	0	2
A	Energy sevice interface	1	3
A	Electronic Sensor Integration	0	
	The trnsmission network is operated by	Μ	1
Q A	National trnasmission Operator	0	1
A	Roadmap trnasmission Operator	0	
A	Regional Transmission operator	1	3
A	Redundent trnasmission Operator	0	
Q	In the conext of electrical engineering, RTO is	M	1
Â	Roadmap trnasmission Operator	0	1
A	Regional Transmission Operator	1	2
A	Rural Transmission Operator	0	3
A	Redundent trnasmission Operator	0	
	What is true among the followiing with respect to smart meter as	Ű	· · ·
0	compared to conventional meters,	М	1
A	It controls the generation unit	0	1
A	It uses Two way Communication	1	2
A	It is Less accurate.	0	3
A	It controls sensors.	0	
	With smart meters, a Meter Data Management System	0	
Q	can	М	1
	monitors and analyzes data that flows to and from customer		
A	locations.	1	1
	Sends Signal to controller to stop generation at the Generator	1	
A	locations.	0	2
	can manage mobile crew to make the repair, energy is	Ũ	2
	redistributed.		
A		0	3
A	monitors the restoration process at the outage locations.	0	
	changes energy prices depending on how much	0	
0	demand there is at different times of the day.	М	1
Q A	time of use tariffs	1	1
A	emergency tarriffs	0	2
A	peak load tarriffs	0	
A	offload tarriffs	0	
		0	T

	The two basic category of smart meters are and		
Q	The two busic cutegory of small meters are and	М	1
Ă	AF (audio Frequency) and RF (radio frequency)	C	1
A	RF (radio frequency) and PLC (Power Line Carrier)	1	2
A	RF (radio frequency) and VIC (Voltage Current counter)	C	
A	Digital Counter Type and Digital Sucessive Approximation type	C	
Q	The Smart Grid Enabling Technologies are	М	1
A	Smart Antenna, Advanced transmitters, OPAMPS, Amplifiers.	0	1
A	Smart Meters, AMI, OMS, PHEV, smart sensors.	1	2
	Mesh communication topology, TCP/IP suit, Optical fibre	-	-
A	Communication, IR sensors.	C	3
	Robotics, PIC, Embeded system, integrating-proportional	, i i i i i i i i i i i i i i i i i i i	<u> </u>
A	controllers.	C	4
	In mesh technology, Smart meters to form a	, i i i i i i i i i i i i i i i i i i i	
0	LAN cloud to a collector.	М	1
A	Talks to each other	1	1
A	Talks directly to collector	Ċ	
A	Talks to main server	C	
A	can only receive information		
Q	AMI is	М	. 1
Q A	Advanced Metering Installation	1 v1 (1
A	Advanced Metering Infrastructure	1	
A	Accurate Metering Installation	Ċ	
A	Augmented Metering Intelligence	C	
	Customers have access to historical and real time data on Energy	, C	
0	costs and potentially Carbon Emission data using	м	1
Q A	Geographic Information System	C C	1
A	Islanding		
A A	Outage management system		
A	Smart Meters	1	
	OMS is	M	4
Q A	Outage measurement system.	C C	1
A	Outage management system.	1	
A A	Outlet Measurement system	C C	
	Outlet Measurement scheme		
A	AMR stands for	M	4
Q A	Angle Measurement Unit		1
A A			
A A	Artificial Measurement Reading		
A A	Automatic Measurement Reading	C 1	
	Automatic Meter Reading	M	4
Q	The main Building blocks of AMR system is	М	1
٨	Sucessive approximation system, PID controller, Optical fiber	· · · ·	1
A	network, antenna monitoring system	C	1
4	PIC controller, Digital Meter, GSM modem, communication	1	2
A	interface	1	
A	RS 232, IEEE 302.1, TCP/IP suit, mesh communication network	C C	
A	Inverters, OPAMPS, digital counters, data processing unit	С	4
Q	EMS is	M	1
A	Energy Management System	1	
A	Electricity Monitoring System	C	
A	Electronic Maintenance System	C	
A	Electromagnetic Measuring System	0	4
Q	GIS is	М	1
	a computer based programmer that generate controlling signals	_	
A	for actuators.	C	1

	a microcontroller based system used for particular smart		
A	substation applications.	0	2
7 1	a computer-based tool that examines spatial relationships,	Ū	2
A	patterns and trends	1	3
	a system used for global serial interfacing and interaction with	1	5
A	outside world.	0	4
Q	IED stands for	Μ	1
Â	Integral Electrical Devices	0	1
A	Intelligent Electronic Devices	1	2
A	Intelligent Extended Demand	0	3
A	Interoperable Electrical Demand	0	4
Q	RTU is	М	1
À	Renewable Transmission Unit	0	1
A	Remote terminal Unit	1	2
A	Regional Testing Unit	0	3
A	Roadmap Transmission Unit	0	4
Q	The block diagram of GIS consist of,	М	1
Â	Real world data, Raw data, Data model, Output data	1	1
A	opamp, phase lock circuit, PMUs, AMRs	0	2
A	Receiver, data analyser, Data processor, Multiplexer, Transmitter	0	3
A	sensor data collector, micro processor, PIC controller, stabilizer	0	4
Q	Which one among the following is a smart substation?	М	1
A	IEEE 801.2	0	1
A	INSC 2.0	0	2
A	IEC 61850	1	3
A	IAC 21080	0	4
	Green energy penetration with respect to smart grid is		
Q		М	1
A	Integrate high carbon emission electric power generation.	0	1
A	Integrate the renewable energy sources to grid.	1	2
A	Integrate Intelligent Sensor.	0	3
A	using smart appliances	0	4
Q	A Phasor network consists of	М	1
	GPS, RF communication network , data concentrator, application	0	
A	based systems	0	1
A	PMUs, PDCs, SCADA	1	2
A A	PLC, frequency synthesizer,	0 0	3 4
	PLL, PLC, PIC , embedded systems EMC is	M	4
Q A	Electromagnetic Compatibility	1	1
A A	Electromechanical Compatibility	1 0	2
A	Electricity Management Centre	0	3
A	Electric Motor Controller	0	4
Q	FAS is stands for	M	1
A	Fauld Analysing System	0	1
A	Feeder Automation System	1	2
A	Fault Automation System	0	3
A	Frequency Alignment System	0	4
	Following is NOT a type of IED.	М	1
Q A	Protective Relaying Device	0	1
A	Circuit Breaker Controllers	0	2
A	Capacitor Bank Switches	0	3
A	OPAMP and power converter circuit	1	4
<mark>Q</mark>	In smart home automation, ICT stands for	М	1
A	Interdependent and Commercial Techniques	0	1
A	Interpretability and Computation Technology	0	2

A	Interconnection and Commutation Technology	0	3
A	Information and Communication Technology	1	4
Q	The information flow of OMS is	М	1
	Trouble call database, outage database, Fault diagnose, Dispatch		
A	crew, customer notification, repair and restore	0	1
A	Data conversion, fault diagnose, IED analysis, Dispatch crew	0	2
	Fault diagnose, automated controlling actions, repair and restore,		
A	customer notification	0	3
	Trouble call database, Fault diagnose, Dispatch crew, outage		
A	database, repair and restore, customer notification	1	4
	Bidirectional communication between home appliances and the		
	Smart MV/LV-station, using a home automation system is		
Q	possible because of		1
A	Smart stations	1	1
A	PMUs,	0	2
A	smart sensors	0	3
A	RF communication units	0	4
	Utilities have to upgrade their infrastructure and improve their		
	institutional framework to extend the benefits of		
Q	to the customers.	М	1
A	smart meters and real time pricing	1	1
A	Outage management system	0	2
A	Fault Management system	0	3
A	intelligent electronic system	0	4
	To be able to monitor, operate and control power systems in wide		
	geographical area,combines the functions of smart		
Q	metering devices with the abilities of communication systems.	М	1
A	PMU	0	1
A	IED	0	2
A	HAN	0	3
A	WAMS	1	4
Q	Which of the following device do not operate on DC platform	М	1
A	LED bulbs	0	1
A	Mobile phones	0	2
A	Induction motor	1	3
A	Laptop batteries	0	4
Q	Full form of the SCADA is	М	1
A	Supervisory control and digital acquisition	0	1
A	Supervisory control and data acquisition	1	2
A	Supplementary control and data acquisition	0	3
A	Supplementary control and digital acquisition	0	4
Q	Renewable energy is generated from	М	1
A	Natural resources	1	1
A	Artificial resources	0	2
A	Nuclear resources	0	3
A	does not require any source	0	4
Q	Battery capacity is measured in terms of	М	1
A	Amps	0	1
A A	Volts	0	2
	Watts	0	3
A	Ampere hour	1	4
Q	In Compressed Air Energy Storage (CAES)	М	1
A	air under atmospheric pressure expands through a combustion	~	1
	turbine to create electricity	0	

A	compressed air is released from storage, it expands through a		2
	combustion turbine to create electricity	1	
A	uncompressed air is released from storage, it expands through a		3
	combustion turbine to create electricity	0	
A	any air pressure does the function of producing electricity	0	4
Q	The microgrid is a	М	1
A	local power provider with limited advanced control tools	1	1
A	wide area power provider with limited advanced control tools	0	2
A	local power provider with fully advanced control tools	0	3
A	wide area power provider with fully advanced control tools	0	4
Q	What is the need of energy management in microgrids?	М	1
A	To manage the renewable sources, storages and loads	1	1
A	To increase the stress on grid during peak hour.	0	2
A	To mismatch energy balance in an islanded operation	0	3
A	to manage loads only	0	4
Q	Compressed air storage is a form of	М	1
A	Electrical Storage	0	1
A	Mechanical Storage	1	2
A	Thermal Storage	0	3
A	Electomechanical Storage	0	4
Q	Renewable energy options are meant to provide the smart grid	14	1
	with:	М	1
A	non enhancement of functionality of electric vehicles and plug -	0	1
٨	in hybrids Utilization of vehicle battery packs as energy storage devices	0	2
A	complete solution to demand-supply of power	1 0	2
A	source reactive power fully	0	3 4
A	Pumped Hydro power stations are treated as	M	4
Q A	reserve power capacities	1	1
A	voltage regulators for the grid	0	2
A	bulk power suppliers	0	3
A	conventional generating stations	0	4
Q	Power quality is a major concern because of the	М	1
À	sensitivity of digital and modern control equipment to		1
	distortion/PQ deterioration	1	
A	it does not cause disturbance or damage to loads and components	0	2
A	synchronous machines operate in synchronism	0	3
A	bus voltages are maintained	0	4
Q	which of the following is not a property associated with power		1
	quality of smart grids	М	
A	Self healing	0	1
A	Frequency monitoring and control	0	2
A	load forecasting	0	3
A	Asset management	1	4
Q A	A basic requirement for maintaining power quality is	М	1
	balancing supply and demand	1	1
A	to only monitor frequency	0	2
A	to only remove harmonics	0	3
A	to only control active power	0	4
Q	A real - time power quality study feature is	М	1
A	no real - time measurement of parameters of signal components	~	1
	in power disturbances	0	
A	non Identification of types and causes of power disturbances	0	2
A	Location of power disturbances	1	3 4
A	reactor control	0	4

Q	Distributed generation (DG) and integration of distributed		1
	resources (DERs) in the form of Microgrids can	М	
A	disturb power quality and reliability significantly	0	1
A	improve power quality and reliability significantly	1	2
A	no difference will be made in power quality and reliability		3
	significantly	0	
A	improve power quality but will impact reliability badly	0	4
<mark>Q</mark>	Transients are characterized by	М	1
Â	frequencies ranging from tens of hertz	0	1
A	with no frequency deviations	0	2
A	frequencies ranging only in MHz	0	3
A	frequencies ranging from tens to hundreds of kilohertz or even		4
	megahertz	1	
Q	EMI adversely affects	М	1
A	telecommunication processes	1	1
A	transformer operation	0	2
A	generator operation	0	3
A	does not affect anything	0	4
Q	Microwave, power line, and/or fiber optic core network		1
	backbones	М	
A	were meant to securely connect		1
	two - way digital communication devices for every home,		
	building, and appliance throughout a utility 's service territory	1	
A	were never meant to securely connect		2
	two - way digital communication for only connecting substations		
	throughout a utility 's service territory	0	
A	were meant to securely connect		3
	two - way digital communication for only connecting substations		
	and conventional generating stations throughout a utility 's		
	service territory	0	
A	were never meant to securely connect		4
	two - way digital communication devices for every home,		
	building, and appliance throughout a utility 's service territory	0	
Q	Cyber security	М	1
A	provides control of active and reactive power flows	0	1
A	does not provide protection to physical assets from modification		2
	or damage from accidental or malicious misuse of computer based control facilities	0	
		0	2
A	provides voltage and frequency stability	0	С Д
А	provides protection to physical assets from modification or damage from accidental or malicious misuse of computer based		4
	control facilities	1	
0	ZigBee communication Technologies are used in	M	1
Q A	HAN	1	1
A	NAN	0	2
A	WAN	0	3
A	Power line communication	0	4
Q	TCP/IP protocol has	M	1
A	3 layers	0	1
A	4 layers	0	2
A	5 layers	1	3
A	6 layers	0	4
Q	Facets of the cyber security include:	М	1
Â	voltage control	0	1
A	fault recovery	0	2
A	Event logging, aggregation, and correlation	1	3

A	load shedding	0	1
Q	The Data Rate of WIMAX Communication Technology is	M	4
A	Up to 75 MBPS	1	1
A	Up to 25 MBPS	0	2
A	Up to 10 Mbps	0	3
A	Up to 50 MBPS	0	4
Q	The Coverage Range of ZigBee Communication Technology is	M	1
A	30-50 Mtr	1	1
A	1-5 Kms	0	2
A	10-50 Kms	0	3
A	10 Mtr	0	4
Q	Wireless Technologies	Μ	1
Â	increase installation cost, but provide constrained bandwidth and		1
	security options	0	
A	can reduce installation cost, but provide unconstrained bandwidth		2
	and security options	0	
A	can reduce installation cost, but provide constrained bandwidth		3
	and security options	1	
A	can increase installation cost, and provide unconstrained		4
	bandwidth and security options	0	
Q	A Home Area Network is an integrated system used	М	1
A	to interconnect the circuit breakers at generating stations	0	1
A	to establish a two-way communication between Utilities and the		2
	consumers	1	
A	in Plug-in hybrid/electric vehicles	0	3
A	for excitation control of generators	0	4
Q	The main responsibility of physical layer in TCP/IP protocol		1
	architecture is	М	
A	routing packets from source to destination across multiple layers	0	1
A	allow users to access network resources	0	2
A	transmits raw bits as signals between nodes	1	3
A	provides reliable and application independent process to process		4
	delivery of messages	0	
Q	The Vehicle to Grid (V2G) mode in electric vehicle (EV) is		1
	critical from the point of view of	М	
A	reducing the charging power requirement of EV	0	1
A	to stabilize the power grid with energy storage support	1	2
A	to increase the fault level of the power grid	0	3
A	to reduce the tariff of electricity The Vahiala to Crid ($V/2C$) mode in electric vahiala (EV)	0	4
Q	The Vehicle to Grid (V2G) mode in electric vehicle (EV) supports the power grid by	М	1
A	absorbing the real power only	M 0	1
A A	supplying the reactive power only	0	2
A A	supplying and absorbing both real and reactive power	1	2 3
A	minimizing the power loss	0	3 4
Q	The battery used in PHEV is typically	M	1
A	smaller in capcity than that in battery electric vehicle (BEV)	1	1
A	larger in capcity than that in BEV	0	2
A	higher in weight than that in BEV	0	3
A	larger in size than that in BEV	0	4
Q	Microgrid facilitates	Μ	1
Â	integration of renewable energy sources (RES)only	0	1
A	integration of conventional sources only	0	2
A	integration of conventional sources with RES only	0	3
A	integration of conventional sources with RES supported with		4
	energy storage systems	1	

Q	Design of protection system is complex in Microgrid because of	М	1
A	integration of renewable energy sources	0	1
A	low fault current levels and bidirectional power flow	1	2
A	small power capacity of Microgrid	0	3
A	smaller network length	0	4
Q	In smartgrid paradigm, the microgrid places itself	М	1
A	base layer of the smargrid structure	1	1
A	top layer of the smargrid structure	0	2
A	mid layer of the smargrid structure	0	3
A	parallel to smartgrid structure	0	4
Q	In context of microgrid, energy storage systems should be	М	1
A	dispatchable source	1	1
A	non-dispatchable source	0	2
A	inertial dispatchable source	0	3
A	inertial non-dispatchable source	0	4
Q	In context of microgrid, battery storage system provide	М	1
A	long term back-up power	0	1
A	short term back-up power	0	2
A	transient back-up power	0	3
A	backup power under all conditions	1	4
Q	In context of microgrid, solar PV system integration causes	М	1
A	fluctuations in bus voltage under bright day-light condition	0	1
A	power quality issues in low solar radiation conditions	1	2
A	higher electricity generation cost per unit	0	3
A	increased maintenance cost of the microgrid	0	4
Q	In context of microgrid, control implementation in island		1
	conditions	М	
A	is easier with droop control mechanism	1	1
A	is easier with communication based control mechanism	0	2
A	is easier with master-slave control mechanism	0	3
A	is easier with agent based control mechanism	0	4
Q	In context of microgrid, use of power switching converters leads	м	1
	to the complexity in	М	1
A	design of protection system	0	1
A	design of control and communication system	1 0	2
A	power sharing between the sources secondary control of microgrid	0	3
A	In context of microgrid, use of power switching converters leads	M	4
Q A	increased size of the system	0	1
A	decreased energy effciency of the system	0	2
A	increased challenges due to EMI and EMC	1	3
A	complex power sharing between the sources	0	4
Q	Microgrid's default operating mode is	M	1
A	autonomous mode	0	1
A	transition mode	0	2
A	island mode	0	3
A	grid tied mode	1	4
Q	Microgrid's is mainly qualified by its capacity to operate in	М	1
Ă	autonomous mode	0	1
A	transition mode	0	2
A	island mode	1	3
A	grid tied mode	0	4
Q	Most complex mode of opeartion in Microgrid's is	М	1
À	autonomous mode	0	1
A	transition mode	0	2
A	island mode	1	3

A	grid tied mode	0	4
Q	Integration of microgrids in smartgrid will be easy with	Μ	1
Q A	single small capacity microgrid integration	0	1
A	cluster of microgrids together	1	2
A	cluster of multi-microgrids structure	0	3
A	single large capacity microgrid integration	0	4
Q	Large capacity renewable energy integration in smart grid is		1
	easily possible	М	
A	through microgrid integration	1	1
A	through power grid integration	0	2
A	through distributed generation	0	3
A	through autonomous power plants	0	4
Q	Installation of small capacity Active filter for power quality		1
	improvement is preferred at	Μ	
A	at consumer end in power grid	1	1
A	at distribution feeders in utility network	0	2
A	at major substation	0	3
A	in parallel to the electrical equipements	0	4
Q	Pumped hydro as a energy storage system can be used as	М	1
A	long term back-up power	1	1
A	short term back-up power	0	2
A	transient back-up power	0	3
A	backup power under all conditions	0	4
Q	Smartgrid is realizable as a giant system which is	М	1
A	formed by integration of multidisciplinary engineering	1	1
A	completely governed by IT infrstrcuture	0	2
A	same as existing power grid	0	3
A	going to affect the electical consumer in long run	0	4

ifficulty sition