			question_type	question_difficulty
A=ANSWER	answer_description	answer_expla	answer_isright	answer_position
	An existing 400 W electric bulb working at 10 hrs/day on burning is to be replaced			
	with 325 W energy efficient bulb which cost Rs. 300 more than the existing bulb. What			
	will be the approximate simple payback period if electricity costs at Rs. 7 per unit?			
Q			М	1
A	2.5 months		0	1
A	0.7 months		0	2
A	1.8 months		1	3
A	1.2 months		0	4
Q	The use of blower door attachment in energy auditors tool box		M	1
Α	To measure building and structure tightness		1	1
A	Combustion efficiency of furnaces		0	2
A	To identify problem with air flows		0	3
A	Measuring performance of electrical systems		0	4
Q	Functional energy audit does not include which of the following?		M	1
A	Analyzing energy gain and losses due to specific structure of building		1	1
Α	Analyzing energy requirement and ECOs for domestic hot water supply system		0	2
Α	Analyzing energy requirement and ECOs for HVAC processes		0	3
Α	Analyzing energy requirement and ECOs for Air distribution system for building		0	4
Q	The last step of the energy audit process is		M	1
Α	Collection of facility data		0	1
A	Formation of audit team		0	2
A	Energy Bill analysis		0	3
Α	Recommendation of ECOs		1	4
	"The judicious and effective use of energy to maximize profits and enhance			
Q	competitive positions". This can be the most accurate definition of:		M	1
A	Energy conservation		0	1
Α	Energy management		1	2
A	Energy policy		0	3
Α	Energy Audit		0	4
	Energy cost control programs will result in both reducedand reduced			
Q	emissions of environmental pollutants		M	
Α	Energy consumption		1	
A	Material consumption		0	

А	Time consumption	0	
A	Human Work	0	
Q	Pie chart representation of energy consumption is nothing but	М	
А	Energy audit report	0	
А	Energy profile	1	
А	Energy map	0	
А	Energy integration	0	
	Replacement of DC generator by solid state variable speed drivers (VSD) overall		
Q	efficiency.	М	
А	Doesn't affect	0	
А	Increases	1	
А	Decreases	0	
А	Stabilizes	0	
Q	Application of occupancy sensors is well suited for .	М	
А	Day light based controllers	0	
А	Night based controllers	0	
А	Motor controllers	0	
А	Movement or noise detector in room space	1	
Q	Usually a butterfly valve is used in	М	
А	On off control	0	
А	Load unload control	0	
А	Throttle control	1	
А	Turn valve control	0	
Q	Which of the following is NOT a type of lighting control?	М	
А	Dimmers	0	
А	Timers	0	
А	VSD	1	
А	Photosensors	0	
Q	How do LEDs generate light?	М	
A	By moving electrons in compound semiconductors	1	
A	By heating up filament	0	
A	By ionizing mercury vapor in a glass tube	0	
A	By moving electric current through a tube containing gas	0	
	How much power is consumed by throttle controlled compressor when delivering no		
Q	air?	М	
A	50% of its full load power	0	

A	70% of its full load power	1	
A	30% of its full load power	0	
A	40% of its full load power	0	
Q	Which of the following statement is wrong about mercury vapor lamps?	М	
A	They have short life	1	
A	They have long life	0	
A	Their output decreases as they age	0	
A	They consume same amount of energy even though output decreases with age	0	
Q	is the key parameter used in pinch technology.	М	
A	Capacity	0	
A	Heat duty	0	
A	$\Delta T_{ m min}$	1	
A	Flow rate	0	
	Provided, if C _C and CH are heat capacity flow rates of cold and hot process streams		
	respectively, then in pinch decomposition diagram, for a match of hot and cold process		
	streams to be feasible at the pinch, which is the necessary and sufficient condition for		
0	stream matching below the pinch?	М	
A	Cc ≥C _H	0	
A	Cc ≤C _H	1	
A	$Cc = C_H$	0	
A	It do not depend upon heat capacities	0	
	The temperature up to which the process stream is to be heated or cooled is		
Q		М	
A	Source temperature	0	
A	Target temperature	1	
A	Approach temperature	0	
A	Threshold temperature	0	
	Source temperature of a process stream is 60 K and target temperature is 160 K. If heat		
	capacity rate of a stream is 2.5 KW/K how much heat should be removed from or		
Q	added to this stream?	М	
A	250 KW should be removed	0	
A	50 KW should be added	0	
A	250 KW should be added	1	
A	100 KW should be removed	0	

	Source temperature of stream 1 is 673 K and target temperature is 373 K and heat		
	capacity rate of a stream is 1.5 KW/K. Source temperature of stream 2 is 293 K and		
	target temperature 553 K with heat capacity rate 2.5 KW/K. Heat can be exchanged		
	from hot to cold stream, then how much external hot or cold utility is required to be		
Q	supllied and to which stream in order to achieve its target temperature?	M	
A	200 KW of hot utility is to be supplied to stream 1	0	
A	200 KW of cold utility is to be supplied to stream 2	0	
A	200 KW of hot utility is to be supplied to stream 2	1	
Α	200 KW of cold utility is to be supplied to stream 2	0	
	According to rules for heat exchanger network design to satisfy minimum utility target,		
	developed by scientist, Linnhoff, in pinch composition diagram, the hot utility can be		
Q	used	М	
A	Only below the pinch (i.e. cold side of pinch)	0	
A	Only above the pinch (i.e. hot side of pinch)	1	
A	Either below or above the pinch (i.e. either cold or hot side of pinch)	0	
A	Exactly at the pinch	0	
	The difference between cummulative enthalpy values corresponding to the upper ends		
Q	of hot and cold temperature-enthalpy curves represents	М	
	Minimum cold utility required at specific ΔT_{min} value for the specific system of hot		
A	and cold process streams where exchaage of heat among the streams is allowed	0	
	Total cold utility required the specific system of hot and cold process streams where		
A	exchnage of heat among the streams is not allowed	0	
	Total hot utility required the specific system of hot and cold process streams where		
A	exchnage of heat among the streams is not allowed	0	
	Minimum hot utility required at specific ΔT_{min} value for the specific system of hot and		
Α	cold process streams where exchnage of heat among the streams is allowed	1	
	According to Linnhoff's rules of heat exchanger networking, which of the following		
Q	should not be placed, in above pinch region?	М	
A	Steam heaters	0	
A	Furnaces	0	
A	Coolers	1	
А	Reboiler	0	

	In a class hard and hard and a second of the minimum manufacture of hard and hard an		
	In a given heat exchanger network, the minimum number of heat exchangers required are 8 and the number of process stream are 5, then, according to Hohmann's rule, what		
0	is the number of distinct utilities required in this heat exchanger network?	М	
<u>Q</u>	A	1	
Α	2	0	
Λ	3	0	
٨	1	0	
	The hot stream available at 250 °C is to be cooled down to 40 °C using the available		
	cold utility of 31.5 MW. Calculate the heat capacity flow rate (in MW/K) of this hot		
0	stream.	N 4	
<u>u</u>	0.15	M 1	
Α	1.5	0	
Λ	15	0	
٨	150	0	
^	In composite curves the areas where the hot and cold composite curves do not show the	0	
0	minimum utility requirements by reading the enthalpy axis, represents	М	
Δ	Minimum hot utility	0	
A	Minimum cold utility	0	
A	Heat recovery	1	
A	Pinch temperature	0	
Q	The section above the pinch in conventional composite curve	М	
A	Heat sink	1	
A	Heat source	0	
A	Qc min	0	
A	Area where system reject heat	0	
Q	Stream splitting below the pinch takes place when	М	
A	N _H <nc and="" cc<="" ch≤="" td=""><td>1</td><td></td></nc>	1	
A	N _H >Nc and Ch≤ Cc	0	
А	N _H <nc and="" cc<="" ch≥="" td=""><td>0</td><td></td></nc>	0	
А	N _H >Nc and Ch≥ Cc	0	
0	In composite curves diagram, as cold composite curve shifts to right,		
	AT as well minimum willing as suinement and a linear dis-	М	
А	ΔT_{min} as well minimum utilities requirement goes on increasing	1	
A	ΔT_{min} as well minimum utilities requirement goes on decreasing	0	

А	ΔT_{min} increases but minimum utilities requirement decreases	0	
A	ΔT_{min} decreases but minimum utilities requirement increases	0	
	-		
Q	During heat exchanger networking, as ΔT_{min} increases	М	
A	Capital cost decreases and operating cost increases	1	
A	Capital cost increases and operating cost decreases	0	
A	Both the capital cost and operating cost increases	0	
A	Both the capital cost and operating cost decreases	0	
	is the temperature at which the ability to transfer heat between the		
Q	process streams is most constrained.	М	
A	Minimum approach temperature	0	
А	Threshold approach temperature	0	
A	Pinch temperature	1	
A	Target temperature	0	
Q	Cold process streams are those which	М	
A	have low enthalpy	0	
А	have low temperature	0	
А	are need to be heated	1	
А	are need to be cooled	0	
Q	In conventional problem except threshold, increasing ΔTmin will	М	
A	Increase the requirement of cold utilities	1	
A	Decrease the requirement of cold utilities	0	
А	Increase the heat recovery	0	
A	Decrease the requirement of hot utilities	0	
	In Heat exchanger network, on the cold side of pinch, which of the following utility		
Q	can be provided?	М	
A	Flue gas	0	
A	Hot Air	0	
A	Dry Steam	0	
A	Cooling water	1	
Q	Area targeting can be carried out through	М	
A	Composite curve	0	
А	Balanced composite curves	1	
A	Balanced hot composite curve	0	
A	Grand composite curve	0	

	According to scientist Hohmann, if N_S = number of process streams and N_U = number		
	of distinct hot and cold utility sources, then, minimum number of heat exchangers		
	$(N_{HX,min})$ requireed in heat exchanger network to be designed to exchange heat between		
0	all these process and utility streams, is given by equation	М	
Δ	$N_{HX,min} = N_S + N_U + 1$	0	
^		1	
A	$N_{HX,min} = N_S + N_U - 1$	1	
A	$N_{HX,min} = N_S + N_U$	0	
A	$N_{HX,min} = N_S - N_U$	0	
	During heat exchanger network design to satisfy minimum utility requirement, in pinch		
	decomposition diagram, heat from hot to cold streams can not be		
Q	tramsferred	М	
A	Above the pinch	0	
A	Below the pinch	0	
A	Across the pinch	1	
A	Near the pinch	0	
	A cold composite curve can be shiftedto change minimum approach		
Q	temperature difference as well minimum utility requirements.	М	
A	Vertically	0	
A	Horizontally	1	
A	Diagonally	0	
A	Not possible to shift in any direction	0	
	Calculate the annualized cost of Heat exchanger Network, if return on investment is		
	0.6, total purchase cost of heat exchangers is Rs. 36 lakhs and utility cost is Rs. 4		
Q	lakhs/yr	М	
A	Rs. 24 lakhs	0	
A	Rs. 25.6 lakhs	1	
A	Rs. 38.4 lakhs	0	
A	Rs. 20 lakhs	0	

Q	During pinch analysis, when temperature interval (TI) method is used to find pinch temperature and minimum utility requirement, if $(mC_p)_{hot}$ & $(mC_p)_{cold}$ indicates heat capacity flow rates of hot and cold process streams respectively, ΔT_i gives temperature difference corresponding to specific temperature interval and ΔT_{min} -gives minimum approach temperature difference, then, the heat content, Q_i in each temperature interval of TI diagram is calculated by equation	М	
A	$Q_{i} = \left[\sum (mC_{p})_{hot} - \sum (mC_{p})_{cold}\right] \times \Delta T_{min}$	0	
Α	$Q_{i} = \left[\sum (mC_{p})_{hot} + \sum (mC_{p})_{cold}\right] \times \Delta T_{min}$	0	
Δ	$Q_{i} = \left[\sum (mC_{p})_{hot} + \sum (mC_{p})_{cold}\right] \times \Delta T_{i}$	0	
Δ	$Q_{i} = \left[\sum (mC_{p})_{hot} - \sum (mC_{p})_{cold} \right] \times \Delta T_{i}$	1	
Q	The temperature of water vapour released from the solution after facing boiling point elevation is	M	
A	Equal to 100°C	0	
A	Below 100°C	0	
A	Above 100 °C	1	
Α	0 °C	0	
Q	What do we mean by the term Evaporator Consumption?	M	
A	Steam consumed in 1hr	1	
A	Steam produced in 1hr	0	
A	Feed supplied in 1hr	0	
A	Feed supplied in 1day	0	
Q	An evaporator is operating at an atmospheric pressure is fed at the rate of 10000Kg/hr of weak liquor containing 4% caustic soda .Thick liquor leaving the evaporator contains 25% caustic soda then capacity of the evaporator is	М	
A	8400Kg/hr	1	
А	10000 Kg/hr	0	
A	1600 Kg/hr	0	
A	9000 Kg/hr	0	
Q	Which type of feeding arrangement is supposed to give maximum steam economy to a		
	particular consumption?	М	
A	Forward feed	0	
A	Backward feed	1	
A	Parallel feed	0	

А	Mixed feed	0	
Q	The boiling point of the solution from 1 st to last effect in a backward feed		
	evaporator.	М	
A	Increases	0	
А	Remains same	0	
A	Decreases	1	
A	Oscillates	0	
Q	Steam economy of single effect evaporator is always	М	
Α	1	0	
А	<1	1	
Α	>1	0	
A	0	0	
Q	Infeed multiple effect evaporator system, the vapor flows from first to last		
	effect and liquid flow from last to first effect.	М	
A	Forward Forward	0	
A	Backward	1	
Α	Mixed	0	
Α	Parallel Parallel	0	
Q	What is the steam economy of an evaporator if the evaporator capacity is 40kg/hr and		
	the steam consumption is 65kg/hr?	М	
А	0.7	0	
А	0.61	1	
А	0.8	0	
A	0.5	0	
Q	In a triple effect evaporator the lowest pressure will be for	М	
А	1 st Effect	0	
A	2 nd Effect	0	
А	3 rd Effect	1	
А	2 nd and 3 rd Effect with same pressure	0	
Q	What is the driving force for evaporation if a solution boils at a temperature of 396 K		
	and boiling point of water at a pressure in the vapor space is 373K, temperature of the		
	condensing steam is 410 K	М	
Α	23 K	0	
А	14 K	1	
A	37 K	0	

A	396 K	0	
Q	operates like a refrigeration cycle and requires an external fluid as the		
	working medium.	М	
A	Multiple effect distillation	0	
А	Vapor recompression	0	
А	Reboiler flashing	0	
А	Heat pumping	1	
Q	Select the correct statement from options given below.	М	
A	Pumps are required in case of backward feed multiple effect evaporator	1	
А	Pumps are required in case of forward feed multiple effect evaporator	0	
А	Pumps are required in case of both the forward as well backward feed multiple effect		
	evaporator	0	
А	Pumps are not at all required in either of the forward or backward feed multiple effect		
	evaporator	0	
Q	In backward feed triple effect evaporator (TEE), the temperature of steam and boiling		
	point temperatures in 1 st , 2 nd and 3 rd effect are 130 °C, 115 °C, 95 °C and 72 °C		
	respectively. The flow rates of steam supplied to the 1 st effect and vapor leaving the 1 st ,		
	2 nd and 3 rd effect are 3480, 3160, 2720 and 2110 kg/hr respectively. The latent heats of		
	vaporization of steam and vapors leaving 1 st , 2 nd and 3 rd effect are 2200, 2250, 2310		
	and 2380 kJ/kg respectively. The overall heat transfer coefficients for 1st, 2nd and 3rd		
	effect are 2500, 2000 and 1600 W/m ² K respectively. Then calculate the heat transfer		
	area available in the 1 st effect of this TEE. Assume that there is no any boiling point		
	rise in any of the effects.	М	
Α	56.71 m ²	1	
А	49.38 m^2	0	
А	41.89 m^2	0	
A	47.43 m^2	0	
Q	Forward feed triple effect evaporator is used to concentrate 20000 kg/hr of feed		
	solution containing 10 wt% of solute to 25wt% solute concentration. Assuming equal		
	vapor generated in each effect, what will be concentration of solution leaving the		
	second effect?	М	
A	18.50%	0	
A	17.50%	0	
A	15%	0	

Α	16.70%	1	
Q	In which effect, the product concentration will lowest for a backward feed triple effect		
	evaporator?	М	
А	1 st Effect	0	
A	2 nd Effect	0	
A	3 rd Effect	1	
A	1 st and 2 nd Effect with same concentration	0	
Q	The slope of the Duhring's Plot is always	М	
A	Greater than one	1	
A	Equal to one	0	
A	Less than 1	0	
А	Less than zero	0	
Q	Which one of the following evaporator uses maximum mechanical energy to operate?	М	
A	Parallel feed multiple effect evaporator	0	
A	Mixed feed multiple effect evaporator	0	
A	Forward feed multiple effect evaporator	0	
A	Backward feed multiple effect evaporator	1	
Q	In forward feed tripple effect evaporator operation, the concentration of liquid product		
	leaving the 2 nd effect is that of leaving from the 3 rd effect.	М	
A	less than	1	
A	more than	0	
A	more or less than	0	
A	equal to	0	
Q	In forward feed triple effect evaporator (TEE) design, the temperature of steam used is		
	120 °C and boiling point temperature of solution in 3 rd effect is 50 °C. There is no any		
	boiling point rise in any effect. The overall gheat transfer coefficients for 1 st , 2 nd and 3 rd		
	effect are 3100, 2000 and 1100 W/m ² K respectively. Then calculate temperature		
	driving force for the 2^{nd} effect i.e. ΔT_2	М	
A	15.92 °C	0	
A	13.39 °C	0	
A	23.03 °C	0	
A	20.21 °C	1	
Q	About evaporator operation, select the wrong statement from options below:	M	

A	If feed to evaporator enters at temperature much below the boiling point of feed		
	solution, about $1/4^{th}$ of steam entering in evaporator is used just to heat the cold feed to		
	its boiling point	0	
A	If feed to evaporator enters at temperature above the boiling point in evaporator, results		
	in additional vaporization by flashing off the part of entering hot feed	0	
A	Preheating the feed increases the heat transfer area required in evaporator	1	
A	Preheating the feed reduces the heat transfer area required in evaporator	0	
Q	Which of the following is not a benefit of cogeneration?	М	
A	Increased efficiency of energy conversion and use	0	
A	Reduced power factor	1	
A	Reduced greenhouse gas emissions	0	
A	Reduced transmission losses	0	
Q	The Ranking Cycle is related to	М	
A	Boiler	0	
A	Condenser	0	
A	Steam turbine	1	
A	Pump	0	
Q	The cogeneration is not applicable to which type of industry?	М	
A	Sugar	0	
А	Refinery	0	
А	Paper and pulp	0	
Α	Refractory / brick-making	1	
Q	A plant producing both, electrical power & process heat simultaneously is?	М	
Α	Cogenital plant	0	
А	Cogenerial plant	0	
А	Cogeneration plant	1	
A	Conglomerate plant	0	
Q	Thermal efficiency of cogeneration plant is calculated as:	М	
A	Efficiency = (Heat output + Electrical power output) / (Electrical power input)	0	
Α	Efficiency = (Heat output + Electrical power output) / (Heat input)	1	
A	Efficiency = (Heat output) / (Electrical power input)	0	
Α	Efficiency = (Electrical power output) / (Heat input)	0	
Q	Which one of the following cannot be used as fuel for the gas turbine?	М	
A	Naphtha	0	
A	LPG	0	
A	Natural gas	0	

Α	Low sulphur heavy stock	1	
0	Steam turbines are used as prime mover in	M	
Δ	Topping cycle cogeneration system only	0	
Δ	Bottoming cycle cogeneration system only	0	
Δ	Combined cycle cogeneration system only	0	
Δ	Topping cycle, bottoming cycle as well combined cycle cogeneration system	1	
^	What is the actual steam rate (ASR) required for a steam turbine power plant for which		
	theoretical steam rate (TSR) is 40 kg/kWh and overall efficiency of turbine generator		
0	set is 80%?	М	
Δ	10 kg/kWh	0	
٨	50 kg/kWh	1	
٨	30 kg/kWh	0	
Δ	60 kg/kwh	0	
0	Back pressure turbine, extraction condensing turbine, these are the types of	M	
Λ	Gas turbine	0	
Λ	Steam turbine	1	
Λ	Diesel engine cogeneration system	0	
Α	Reciprocating engine system	0	
0	Otto cycle is	M	
<u>Q</u>	Two stroke engine	0	
Α	Single stroke engine	0	
Α	Multi stroke engine	0	
Α	Four stroke engine	1	
A	Which of the following is not the example of Distributed generation cogeneration	1	
0	system?	М	
<u>Q</u>	Gas turbine	1	
Α	Reciprocating engine system	0	
Α	Micro turbines	0	
Α	Fuel Cells	0	
A	In which of the following power generation technology, power is generated through an	U	
0	electrochemical process?	N 4	
4	1	M	
A	Reciprocating engine Micro turbine	0	
A		0	
A	Gas turbine	0	
А	Fuel cell	1	

	In a glass industry, exhaust gas from the glass melting furnace is used for power		
	generation by installing steam boiler and turbine. Then the type of co-generation is		
Q	called as:	M	
A	Gas turbine Gas turbine	0	
Α	Bottom cycle	1	
A	Diesel generator	0	
A	Topping cycle	0	
Q	Which of these is not an application of back pressure turbine?	M	
A	Desalination of sea water	0	
A	Filtration of water	1	
A	Process industries	0	
A	Petrochemical installations	0	
Q	What is an important advantage of closed-cycle gas turbine cogeneration systems?	M	
A	High pressure of produced steam	0	
A	Low capital costs	0	
A	Working fluid remains clean and it does not cause corrosion or erosion	1	
A	High temperature of produced steam	0	
Q	Major advantage of waste heat recovery in industry is:	М	
A	Reduction in pollution	1	
A	Decreases in efficiency	0	
A	Effectiveness is Increased	0	
A	Save Energy from Process	0	
Q	Typical waste gases temperature from glass melting furnace	М	
A	1000-1550 °C	1	
A	800-950 °C	0	
A	650–750 °C	0	
A	760-815 °C	0	
Q	Recovery of heat from dryer exhaust air is a typical application of:	М	
A	Waste heat recovery boiler	0	
A	Heat pump	0	
Α	Heat wheels	1	
A	Economizer	0	
	A recuperator counter flow type for preheating air receives flue gases at 816 °C and		
	exits at 371 °C. The air enters at 37.8 °C and is preheated to 260 °C. The LMTD is		
0	°C	N.4	
Ų	C	M	

Α	604	0	
A	404	0	
A	435	1	
A	224	0	
Q	Which of the following is very low quality waste heat recovery source?	M	
A	Boiler	0	
A	Oven	0	
A	Furnace	0	
A	Pump	1	
Q	In case of Hybrid recuperator, what is the mode of heat transfer?	M	
A	Conduction & Convection	0	
A	Radiation & Convection	1	
A	Conduction & Radiation	0	
A	Conduction, Convection and Radiation	0	
	Which waste heat recovery equipment consist of four major parts i.e. evaporator,		
Q	compressor, condenser and throttling valve?	М	
A	Heat wheel	0	
A	Heat pipe	0	
A	Heat pump	1	
A	Regenerator	0	
	For every°C reduction in flue gas temperature by passing through an		
Q	economiser or a pre-heater, there is 1% saving of fuel in the boiler.	М	
A	1	0	
A	22	1	
A	5	0	
A	36	0	
Q	Thermo-compressor is commonly used for	М	
A	compressing hot air	0	
A	flash steam recovery	1	
A	distillation	0	
A	reverse compression of CO2	0	
Q	Regenerator is widely used in:	М	
A	Reheating Furnaces	0	
A	Heat treatment furnaces	0	
A	Baking Ovens	0	
A	Glass melting furnaces	1	

Q	The energy sources, that are either found or stored in nature areknown as:	М	
A	Primary energy sources	1	
Α	Secondary energy sources	0	
Α	Tertiary energy sources	0	
Α	Commercial energy sources	0	
Q	The primary energy consumption of India is	M	
Α	1/29 of the world	1	
Α	1/12 of the world	0	
Α	1/7 of the world	0	
Α	1/3 of the world	0	
	If the following countries are arranged in order of the highest to lowest oil resrves		
Q	found there, which country will be at fourth position?	М	
А	Canada	0	
Α	USA	1	
Α	Saudi Arabia	0	
Α	Venezuela	0	
	To measure building and structure tightness, which of the following instrument is		
Q	available in energy auditor's tool box?	М	
Α	Blower ddor attachment	1	
A	Combustion analyzer	0	
Α	Foot candle meter	0	
A	Anemometer	0	
Q	What is VSD which is used as energy efficient technique?	М	
Α	Variable solid drive	0	
A	Volume specific drive	0	
Α	Variable speed drive	1	
Α	Velocity speed drive	0	
	During heat exchanger networking, capital cost decreases and operating cost increases		
Q	with	М	
А	increase in ΔTmin	1	
Α	decrease in ΔTmin	0	
А	increase in ΔTthresh	0	
Α	decrease in ΔTthresh	0	
	The multiple effect evaporator (MEE), wherein, the feed is admitted individually to		
Q	every effect and vapor from previous effect is still used to heat the next effect, is	М	
A	Forward feed MEE	0	

A	Backward feed MEE	0	
A	Paralle feed MEE	1	
A	One to one MEE	0	
Q	Combined cycle cogeneration system is the combination of	M	
A	Steam turbine and diesel engine system	0	
A	Gas turbine and diesel engine system	0	
A	Topping and bottoming cycle cogeneration system	1	
A	Steam turbine and Gas turbine system	0	
Q	Ceramic recuperators can withstand temperatures up to:	M	
A	600 °C	0	
A	1300 °C	1	
A	2500 °C	0	
A	900 °C	0	
Q	Which of the following is not the non-commercial energy source?	M	
A	Biomass waste	0	
A	Coal	1	
A	Firewood	0	
A	Cowdung	0	