Q=QUEST A=ANSW	I - I	question_explanation answer_explanation	question_type answer_isright	question_difficulty answer_position
	ans wer_deserration	unower_explanation	uns wei_isrigite	unswer_position
	LMTD correction factor is applied inHeat			
Q	Exchanger		M	1
A	1-1 cocurrent			0 1
A	Double pipe			0 2
A	All multipass			1 3
A	All involving liquid/liquid heat transfer			0 4
Q	LMTD correction factor is used in heat exchanger design for		M	1
A	Double pipe heat exchanger			0 1
A	Multipass shell and tube heat exchanger			1 0 3
A	Fouling fluids			
A	Counter flow of hot and cold fluids			0 4
Q	Thickness of flat heads and covers (t) must be equal		M	
	to(Where De is effective diameter of the flat head,			
	P is the pressure, f is allowable stress of the material and C is a			
	factor depending upon the method of shell attachment.)			1
	CD // /D			1
A	$CD_e\sqrt{(p/f)}$			1
A	$CD_e\sqrt{(p.f)}$			0 2
A	CD_{e} (p/f)			0 3
A	$C\sqrt{(D_e p/f)}$			0 4
	In a shell and tube heat exchanger, shortest center to center			
Q	distance between adjacent tube is		M	1
A	Called tube pitch			1 1
A	Called tube clearance			0 2
A	Always less than diameter of tube			0 2 3
A	Always greater than diameter of tube			0 4
	In most of the shell and tube heat exchanger, the tube pitch as			
Q	compared the tube diameter is		M	1
A	Less			0 1
A	1.25-1.50 times			1 0 3
A	2.5 times			0 3

A	One-fourth	0	4
	Triangular pitch tube layout as compared to square pitch in a		
Q	shell and tube heat exchanger	M	1
A	Permits the use of less tube in a given shell diameter.	0	1
	Facilitates comparatively easier external cleaning because of		
A	larger clearance	0	2
A	Permits the use of more tubes in a given shell diameter.	1	3
A	Permits the use of less tube in a given heat exchanger	0	4
Q	25 percent cut segmental baffle means that the baffle	M	1
A	Height is 75% of the I.D. of the shell	1	1
A	Height is 25% of the I.D. of the shell	0	2
A	Spacing is 75% of its height	0	3
A	Width is 25% of its height	0	4
0	In shell and tube heat exchangers, straight tie rod are used to	N /I	1
Q	Hald baccle in annua	M	1
A	Hold baffle in space	1	1
A	Fix the tubes in position Account for thermal strain	0	3
A	Fix the tubes in outside shell	0	3
A		U	4
0	Most common baffle used in industrial shell and tube heat	N /I	1
Q ^	exchanger is	M 0	1
A	75% cut segmental baffle 25% cut segmental baffle	1	1
A	Orifice baffle	0	2
A		0	3
A	Disk and doughnut baffle	U	4
0	High pressure fluid in a shell and tube heat exchanger should	M	1
Q	preferably be routed through the	IVI 1	1
A	Tubes to avoid the expense of high pressure shell construction	1	1
A	Shell side for smaller total pressure drop Shell side if the flow is counter – current and tube side if the	0	
٨	flow is co-current	0	2
A		0	3
A	Shell side for large overall heat transfer co-efficient	U	4
	In a shell and tube heat exchanger, the clearance of the tube is	N.Γ	1
Q	generally	M	
A	Not less than one-fourth of the tube diameter or 3/16''	1	1

A Equal to the diameter	0	
Liquii io ine diameter	0	3
A Not equal to the diameter	0	4
Q The $LMTD$ correction factor (F_T) is defined as the		1
A Ratio of true temperature difference to the <i>LMTD</i>	1	1
A Ratio of <i>LMTD</i> to the true temperature difference	0	2
A Differenced of true temperature difference and the <i>LMTD</i>	0	3
Geometric mean of the true temperature difference and		
A the <i>LMTD</i>	0	4
Q The minimum baffle height should be M		1
A Equal to the impeller diameter	0	1
A Twice the impeller diameter	1	2
A Twice the tank diameter	0	3
A 3/4 of the tank height	0	4
In chemical process equipments, the conical bottom heads used,		
Q usually has an apex angle of M		1
A 20°	0	1
A 40°	0	2
A 60°	1	3
A 80°	0	4
Q Shell side heat transfer co-efficient in case of square pitch as M		
compared to the triangular pitch under similar condition of fluid		1
A More	0	1
A Same	0	2
A Less	1	3
A Twice	0	4
Which of the following material is seldom used for pressure		
O vessel construction ? M		1
A Rimmed stell	1	1
A Mild steel	0	2
A Killed steel	0	3
A Semi-killed steel	0	4
Q Wrought iron is pure iron with low content of M		1
A Manganese and graphite	0	1

A	Carbon an Magnus	1	2
A	Iran and carbon	0	3
A	Carbon and graphite	0	4
Q	Gray cast iron hardness number is	M	1
A	160 dash 190 BNH	0	1
A	180 dash 220 BNH	0	2
A	180 dash 240 BNH	1	3
A	200 dash 240 BNH	0	4
Q	Cylindrical and spherical shell thin wall having ratio of outside	M	1
	diameter thickness to exceeding		
A	3	0	1
A	2	0	2
A	1	0	3
A	4	1	4
Q	Fa = PD/4t where D is considered for	M	1
A	Mean diameter	1	1
A	Minor diameter	0	2
A	Major diameter	0	3
A	Axial diameter	0	4
Q	For torrispherical elliptical and hemispherical head internal	M	1
	pressure taken astime		
	of external pressure		
A	1.87	0	1
A	1.77	0	2
A	1.67	1	3
A	1.57	0	4
Q	Stress created in a flat plate due to the pressure acting as a	M	1
	load		
A	Uneven distribution	0	1
A	Uniform distribution	1	2
A	Force distribution	0	3
A	Pressure distribution	0	4
Q	According to method of attachment of flat head to shell edge	M	1
	fixity factor change so far forged head fixity factor (C) is		

A	3	0	1
A	0.2	0	2
A	0.5	0	
A	0.4	1	4
Q	Flat ring gasket material thickness range is mm	M	1
A	0.1 to 2.5	0	1
A	0.3 to 1.8	0	2
A	0.5 to 3.5	0	3
A	0.5 to 3.0	1	4
Q	In bolt design number of Bolt consider should be multiple of	M	1
A	2	0	1
A	4	1	2
A	6	0	3
A	8	0	4
Q	A designer use principle for a design of pressure vessel	M	1
	component on		
A	Types of system	0	1
A	Type of weight	0	2
A	Type of height	0	3
A	Type of product	1	4
Q	Depending upon the various requirements are given with	M	1
	weightage and specification		
A	Types of system	0	
A	Type of weight	0	2
A	Type of height	0	3
A	Type of product	1	4
Q	Individual component for design of pressure vessel component	M	1
	is based on		
A	Forces acting on component	1	1
A	Rate of material	0	2
A	Types of system	0	3
A	Types of product	0	4
Q	pressures vessel component involved systematic approach of	M	1
	specification is		

A	1	Unknown to known solution	0	1
A]	Known to unknown solution	1	2
A]	Define solution	0	3
A		Approach solution	0	4
Q	,	The design of pressure vessel each component define	M	1
	:	specification of function element		
A	;	Specific function of element	0	1
A]	Determine forces acting on element	0	2
A]	Design individual component	1	3
A]	Determine failure model	0	4
Q		Rod made of plain carbon steel force applied 5K Newton and	M	1
		area is 228mm ² what is a stress value in N/mm ²		
A	2	21.42	1	1
A		21.92	0	2
A		22.42	0	3
A		22.92	0	4
Q		Unit of modulus elastisity is	M	1
A		N/mm	0	1
A		N/mm^2	0	2
A		N/mm^4	1	3
A		N/mm^3	0	4
Q		Unit of Stress is	M	1
A		N/mm	0	1
A		N/mm^2	1	2
A		N/mm^4	0	3
A		N/mm^3	0	4
Q		Pressure design consideration in vessel design is known as	M	1
A		Industrial design	1	1
A		Information design	0	2
A		Process design	0	3
A		Machine design	0	4
		Column support for the roof of a cylindrical storage tank must		
Q		be provided for	M	1
A	,	Small diameter tank	0	1

A	Large Diameter Tank	1	2
A	Small diameter tall tanks	0	3
A	All tanks irrespective of their heights and diameters	0	4
	Liquid/petroleum fuel storage tanks are built underground (as in		
	case of petrol pumps), when the storage capacity is less than		
Q	kilolitres.	M	1
A	20	0	1
A	30	0	2
A	45	1	3
A	85	0	4
Q	Storage tank operate under pressure from pressure	M	1
	vessel		
A	High	0	1
A	Medium	0	2
A	Low	1	3
A	Same	0	4
Q	Fixed roof tank are meant for liquid flash point	M	1
A	High	1	1
A	Medium	0	2
A	Low	0	3
A	Same	0	4
Q	Material used for storage vessel having maximum tensile stress	M	1
	with joint efficiency is		
A	155 μ/mm2	0	1
A	165 μ/mm2	1	2
A	175 μ/mm2	0	3
A	118 μ/mm2	0	4
Q	Indian standard IS 226 - 1975 structural steel standard quality	M	1
	up to mm thickness		
A	10	0	1
A	15	0	2
A	20	1	3
A	25	0	4

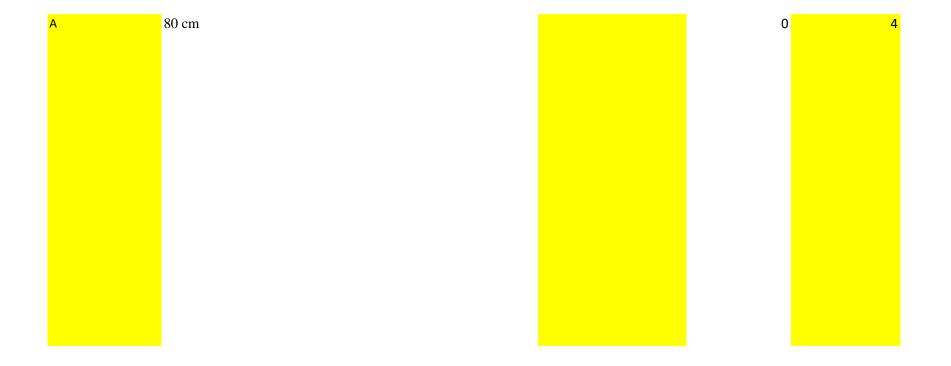
1	Q	For storage tank maximum allowable stress shall be to	M	1	1
		the minimum yield stress			
	A	0.5	C)	1
	A	0.6	C		2
	A	0.8	C) 3	3
	A	0.7	1	4	4
ı	Q	While permissible stress parameter design temperature range for	M	1	1
		storage tank is			
	A	10° C to 200° C	C)	1
	A	-10° C to 200° C	1	2	2
	A	10° C to 240° C	C) 3	3
	A	-10° C to 240° C	C		4
ı	Q	Storage tank bottom plate constructed by welding	M	1	1
		· · · · · · · · · · · · · · · · · · ·			
	A	Spot	C)	1
	A	Butt	1	2	2
	A	Plasma	C		3
	A	Stick	C		4
	0	While two plug joining thickness of the weld is in	M	1	1
		mm			
	A	06_10	C)	1
	A		1	2	2
	A		C) 3	3
	A	06_16	C		4
	0	The joint efficiency factor for the tank for the double weld joint	M	1	ĺ
		is			
	A	0.8	C) 1	1
	A	0.85	1		2
	A	0.9	C)	3
	A	0.95	C		4
	Q	Drain pipe system tested under the water pressure for leakage at	M	1	1
		F-F3 system tesses and mater prossure for founds at			
	A	35 N/cm2	1	1	1
	A	30 N/cm2	C		2
		001701112	•	· · · · · · · · · · · · · · · · · · ·	

A	25 N/cm2	0	3
A	20 N/cm2	0	4
Q	Self supporting cone roof maximum angle value is	M	1
A	35	0	1
A	34	0	
A	36	0	3
A	37	1	4
Q	Thermal stress used in a joint like	M	1
A	Expansion	1	1
A	Stress	0	_
A	Process	0	
A	Machine	0	4
Q	The ratio of increasing length with original length is called	M	1
A	Elongation	0	
A	Strain	0	
A	Percentage of elongation	1	3
A	Yeild stress	0	4
Q	Cast iron and alloy basic carbon percentage is	M	1
A	3 to 4%	1	. 1
A	1 to 2%	0	_
A	0.5 to 1%	0	
A	0. 1%	0	4
Q	The following type of layout is preferred for low volume	M	
	production of non standard products		1
A	Product layout	0	1
A	Process layout	1	2
A	Fixed position layout	0	
A	Combination layout	0	
	The following type of layout is preferred to manufacture a	~	
	standard product in large quantity		
Q		M	1
A	Product layout	1	1
A	Process layout	0	
A	Fixed position layout	0	3

A	Combination layout	0	4
	If all the processing equipment and machines are arranged		
	according to the sequence of operations of a product the layout		
0	is known as	M	1
Q A	Product layout	IVI 1	1
Α Λ	Process layout	0	2
A	Fixed position layout	0	3
	Combination layout	0	4
A Q	Which process is also called product recovery?	M	1
A	Upstream processing	0	1
	Mid-stream processing	0	2
A	Downstream processing	1	3
A A	Biological processing	0	4
A		U	4
	Regional factors for location planning include all of the following except:	M	1
Q	Raw materials		1
A		0	1
A	Markets	0	2
A	Labor considerations	0	3
A	Attitudes	1	4
Q	Process layoutis used for:	M	I
A	Repetitive processing	1	1
A	Intermittent processing	0	2
A	Bioprocess	0	3
A	Chemical process	0	4
Q	The inputs to a transformation process include all of the	M	
	following except		1
A	Material	0	1
A	People	0	2
A	Information	0	3
A	Transportation	1	4
Q	Process selection is primarily considered during:	M	1
A	Planning	1	1
A	Organizing	0	2 3
A	Leading	0	3

A	Controlling		0	4
Q	In the mechanical design process the first step is to		M	1
A	Brainstorm solutions		0	1
A	Prepare rough sketches		0	2
A	Prepare a budget		0	3
A	Identify the problem		1	4
Q	Pressure design and detail machine design is a		M	1
A	Design analysis		0	1
A	Design activity		1	2
A	Design application		0	3
A	Design operation		0	4
Q	The function of a is to transfer heat from one fluid		M	1
	to another			
A	Heat exchanger with cooling water		0	1
A	Heat exchanger		1	2
A	Heat exchanger with reboiler		0	3
A	Heat exchanger with preheater		0	4
Q	In industry, a is a type of packed bed used to		M	1
	perform Separation processes			
A	Packed column		1	1
A	Packed colomn with feed in between		0	2
A	Plate column		0	3
A	Packed between reactor		0	4
Q	At the, the low pressure gas is changed to high pressure	gas	M	1
A	Expander		0	1
A	Ejector		0	2
A	Blower		0	3
A	Compressor		1	4
Q	consisting of a movable plug element and a sta	tionary ring seat in a gene	M	1
A	Gate valve		0	1
A	Ball valve		0	2
A	Globe valve		1	3
A	Middle Valve			4
Q	It indicate a pressure in pressure tank		M	1

A	Orifice	0	1
A	Pressure indicator	1	2
A	Process indicator controller	0	3
A	Rapture dice	0	4
Q	Governor is used for	M	1
A	Controlling the load	0	1
A	Controlling the weight	0	2
A	Controlling the speed	1	3
A	Controlling the operation	0	4
Q	As per hooks law stress is to strain	M	1
A	Infinity	0	1
A	Equal	0	2
A	Proportional	1	3
A	Less than	0	4
Q	The function of a heath cooling water is to	M	1
	transfer heat from one fluid to another		
A	Pressure vessel	0	1
A	Heat exchanger	1	2
A	Storage tank	0	3
A	Expander	0	4
Q	At the, the low temperature gas is changed to high	M	1
	temperature gas		
A	Expander	1	1
A	Ejector	0	2
A	Blower	0	3
A	Compressor	0	4
Q	An injector is a system of ducting and nozzles used to direct the	M	1
	flow of a high-pressure fluid		
A	Expander	0	1
A	Ejector	1	2
A	Blower	0	3
A	Compressor	0	4
Q	require very little space along the pipe axis and hardly	M	1
	restrict the flow of fluid when the gate is fully opened		


A	Gate valve	1	1
A	Ball valve	0	2
A	Globe valve	0	3
A	Middle Valve	0	4
Q	is a device used for measuring flow rate, for reducing	M	1
	pressure or for restricting flow		
A	Orifice	1	1
A	Pressure indicator	0	2
A	Process indicator controller	0	3
A	Rapture dice	0	4
Q	consisting of a movable plug or disc element and a	M	1
	stationary ring seat in a generally spherical body		
A	Gate valve	0	1
A	Ball valve	0	2
A	Globe valve	1	3
A	Middle Valve	0	4
	tray arrangement is recommended for distribution		
Q	column having diameter upto four feet	M	1
A	Cross flow	1	1
A	Split flow	0	2
A	Radial flow	0	3
A	Straight flow	0	4
	Operating velocity in the absorption power is design at pressure		
Q	drop mm	M	1
A	1 - 5	0	1
A	20 – 40	1	2
A	1000 – 1500	0	3
A	100 - 150	0	4
	In between the distillation column and bubble cap having		
Q	minimum clearance is	M	1
A	<mark>76</mark>	0	1
A	96	0	2
A	38	1	3
A	88	0	4


	Distillation and absorption column also known as tower is		
Q	essentially a tall shell with number of nozzle	M	1
A	Horizontal cylindrical	0	1
A	Vertical cylindrical	1	2
A	Spherical	0	3
A	Square	0	4
	Packed column are for depending with liquid containing		
Q	large consideration of solid	M	1
A	Suitable	0	1
A	Stable	0	2
A	Expensive	0	3
A	Not suitable	1	4
Q	A packed column are design for	M	1
A	Low pressure	1	1
A	High pressure	0	2
A	Medium pressure	0	3
A	Atmospheric pressure	0	4
Q	Which type of packing is most suitable for corrosive service	M	1
A	Random packing	1	1
A	Structured packing	0	2
A	Asbestos	0	3
A	Foiled seed	0	4
Q	Chimney play has down corner with number of nozzle	M	1
A	<u> </u>	0	1
A	2	0	2
A	4	0	3
A	0	1	4
Q	Stress concentration is generally denoted by	M	1
A	Ks	0	1
Α	Ky	0	2
A	Ka Caracteristics and the Caracteristics and	0	3
Α	Kt	1	4

	In distillation process Concentration is on selective		
Q	componant	M	1
A	Infinite	0	1
A	Decrease	0	2
A	Constant	0	3
A	Increase	1	4
	Find the distillation preferred for the Relative volatility =		
	Vapour pressure of A/ Vapour pressure of $B = 360/355$ then		
Q	value of Relative volatility is = unit composition	M	1
A	1.01	0	1
A	1.014	1	2
A	1.018	0	3
A	1.016	0	4
Q	Entainer increases the relative vrelatily.	M	1
A	Multi-component distillation	0	1
A	Reactive distillation	0	2
A	Azeotropic distillation	1	3
A	Vapour pressure	0	4
Q	Relative volatility increases by formation of	M	1
A	Low boiling	1	1
A	High boiling	0	2
A	Medium heat	0	3
A	Constant heat	0	4
Q	The use of solvent for increasing the relative volatility is for	M	1
A	Multi-component distillation	0	1
A	Reactive distillation	0	2
A	Azeotropic distillation	0	3
A	Extractive distillation	1	4
	Less risk of contamination the because of short growth period	М	1
Q	in fermentation		
A	Continuous stirred tank	1	1
A	Bubble column	0	2
A	Batch operation	0	3
A	Fluidized bed rotter	0	4

Q	Industrial fermentors hold up to litter of culture	М	1
A	100000	0	1
A	150000	0	2
A	200000	1	3
A	250000	0	4
	for mentor is having poor mixing difficult to control	М	1
Q	pH when addition of acid		
A	Tray	0	1
A	Packed bed fermenter	1	2
A	Forced	0	3
A	Pneumatic	0	4
	The microorganism are disappeared in liquid nutrient medium at	М	1
Q	maintained environment condition		
A	Tray	0	1
A	packed bed	0	2
A	Submerged	1	3
A	Airlift	0	4
	Bubble column bioreactor is usually cylindrical with an aspect	М	1
Q	ratio of		
A	4_5	0	1
A	4_6	1	2
A	4_7	0	3
A	4_8	0	4
	In fermenter sporged zone is known as risen and	М	1
Q	zero that receive no gas at downstream		
A	Batch operated	0	1
A	Continuous stirred tank	0	2
A	Airlift	1	3
A	Bubble column	0	4
	In process when micro orgasm added into	М	1
	medium which support its growth the culture passes through		
Q	number of stage is known as growth curve		
Α	Continuous	0	1
A	Batch	1	2

A	Feb - batch	0	3
A	Airlift	0	4
	Number of bacteria increase exponentially in lock phase so	М	1
Q	expansion means		
A	Specific growth rate	0	1
A	Constant growth rate	0	2
A	Increased growth rate	1	3
A	Decreased growth rate	0	4
	The total amount of biomass in the vessel increase but biomass	М	1
Q	concentration is meant and		
A	Increase	0	1
A	Decrease	0	2
A	Constant	1	3
A	Regulate	0	4
Q	Fresh medium is added in continuously fermenting vessel	М	1
A	Batch operated	0	1
A	Continuous stirred tank	1	2
A	Airlift	0	3
A	Bubble column	0	4
	material is preferable for the construction of small-	М	1
Q	scale fermenter		
A	Quartz	0	1
A	Glass	1	2
A	Iron steel	0	3
Α	proof	0	4
Q	The is non-toxic and corrosion proof	М	1
Α	Quartz	0	1
A	Glass	1	2
Α	Iron steel	0	3
A	proof	0	4
Q	The is largest diameter for glass fermenter	М	1
A	50 cm	0	1
A	70 cm	0	
A	60 cm	1	3

