Q=QUESTION	question_description		question_type	question_difficulty
A=ANSWER	answer_description	answer_explanation	answer_isright	answer_position
Q	What are isomers?		M	1
A	Excited state of a nuclide		1	1
A	Nuclides having the same number of protons		0	
A	Nuclides having the same atomic mass		0	
A	Nuclides having the same number of neutron		0	
			-	
Q	When two light nuclei combine to form a heavier nucleus, the process is called as		М	1
Α	nuclear fusion		1	1
Α	nuclear fission		0	2
Α	nuclear power		0	3
Α	nuclear transmutation		0	4
Q	In SI base units, 1 Bq is equal to		М	1
Α	0.5 disintegration per second		0	1
Α	1 disintegration per second		1	2
Α	10 disintegration per second		0	3
Α	1.5 disintegration per second		0	4
Q	In air, alpha particles have range of		М	1
A	several thousand meters		0	1
A	several hundred meters		0	2
A	few centimeters		1	3
A	several meters		0	4
Q	The fast-moving photons are		М	1
A	alpha radiation		0	1
A	beta radiations		0	
A	gamma radiation		1	
A	no radiation		0	4
Q	What are radionuclides?		M	1
A	unstable nuclides		1	
A	seminuclides		0	
Α	neutral nuclides		0	_
Α	stable nuclide		0	4
	A process in which heavy nucleus splits into two by bombarding a slow-moving			
Q	neutron is called		М	1
A	radioactivity		0	
Α	nuclear fusion		0	2

Α	nuclear fission		1 3
A	nuclear splitting		0 4
Q	Nuclei bombarded with protons, neutron or alpha particles are changed to	M	1
A	stable nuclide		0 1
A	radioisotopes		1 2
A	element having atomic number less than 82		0 3
A	seminuclides		0 4
Q	Which is a cyclotron produced radionuclide	M	1
A	Fluorine-18		1 1
A	Chromium-51		0 2
A	Molybdenum-99		0 3
A	Xenon-133		0 4
Q	Excited state of a nuclide is	M	1
A	isotones		0 1
A	isobars		0 2
A	isotopes		0 3
A	isomers		1 4
	The minimum amount of energy necessary to free an electron from an atom is		
Q	energy of the electron in that atom	M	1
A	potential	the state of the s	0 1
A	kinetic	the state of the s	0 2
A	binding		1 3
A	passive	the state of the s	0 4
	During alpha decay the atomic number of the resulting nuclide (daughter		
Q	nuclide) will be	M	1
A	reduced by 4	the state of the s	0 1
A	reduced by 2		1 2
A	increased by 1		0 3
A	reduced by 1	· ·	0 4
	When the electron absorbs an amount of energy that is just sufficient to move it		
Q	into a higher unoccupied shell, the process is known as	M	1
Α	excitation		1
A	calibration		2
A	radiation		0 3
A	ionization		0 4
Q	1 Becquerel (Bq) corresponds to	M	1

Α	37 kCi		0	1
A	27.03 pCi		1	2
A	2.7 kCi		0	3
A	37 Ci		0	4
Q	Energy emitted from the nucleus as a high-energy photon is known as	M		1
A	X- ray		0	1
A	Beta emission		0	2
A	Gamma ray		1	3
A	Alpha emission		0	4
Q	is the reactor produced radionuclide	M		1
A	Fluorine-18		0	1
A	Molybdenum-99		1	2
A	Oxygen-15		0	3
A	Nitrogen-13		0	4
	dominates in low atomic number materials such as soft tissue and bone			
Q	above 100 kev	M		1
A	Compton interaction		1	1
A	Photoelectric interaction		0	2
A	Pair production		0	3
A	Electron capture		0	4
Q	The transient equilibrium occurs if	M		1
A	parent and daughter radionuclide half life differs by a factor of about 10–50		1	1
A	parent and daughter radionuclide half life differs by a factor of 100		0	2
A	parent and daughter radionuclide half life is equal		0	3
A	parent radionuclide half life is less than daughter radionuclide half life		0	4
Q	During beta minus (β–) decay the atomic mass number (A)	M		1
A	increased by one		0	1
A	decreased by one		0	2
A	remains unchanged		1	3
A	decreased by two		0	4
Q	The probability of photoelectric interaction is	M		1
A	inversely proportional to the cube of γ-ray energy		1	1
A	directly proportional to the cube of γ-ray energy		0	2
A	inversely proportional to the square of γ-ray energy		0	3
Α	directly proportional to the square of γ-ray energy		0	4
Q	A moderator is used in nuclear reactor to slow	M		1
A	protons		0	1

A	alpha particles	0	2
A	neutrons	1	3
A	beta particles	0	4
Q	the kinetic energy of the alpha particle emitted during Rn-222 alpha decay is	М	1
A	4.78 MeV	1	1
A	4.78 kev	0	2
A	2keV	0	3
A	15 MeV	0	4
Q	An alpha particle is also known as	М	1
A	a photon	0	1
A	a positron	0	2
A	an electron	0	3
A	a helium nucleus	1	4
Q	Gamma-ray have	М	1
A	no mass and no electric charge	1	1
A	no mass and an electric charge of +2	0	2
A	no mass and an electric charge of -1	0	3
A	no mass and an electric charge of +1	0	4
Q	In the symbol Tc-99, the number 99 represents	М	1
A	the number of electrons	0	1
A	Avogadro's number	0	2
A	the atomic number	0	3
A	the atomic mass number	1	4
Q	For Bone pain palliation is used commonly.	M	1
A	strontium-89	1	1
A	Tc-99m	0	2
A	Yttrium-90	0	3
A	l - 131	0	4
Q	Radionuclides that emit are preferred for the treatment of bulky tumours	M	1
A	γ-radiation	0	1
A	energetic α- or β-particles	1	2
A	X-rays	0	3
A	Auger electrons	0	4
	Photon energy of is release from the radiation source used in Cobalt		
Q	teletherapy unit	M	1
A	1 keV	0	1
A	1.17 or 1.33 MeV	1	2

Α	50 keV		0 3
A	100 keV		0 4
Q	Cobalt unit is used to treat	M	1
A	coronary blockages		0 1
A	pneumonia		0 2
A	ulcers		0 3
A	Cancers		1 4
Q	Gamma Knife is used to manage	M	1
A	pneumonia		0 1
A	brain tumours		1 2
A	ulcers ulcers		0 3
A	infections		0 4
Q	Cobalt therapy uses from the radioisotope cobalt-60.	M	1
A	alpha particles		0 1
A	delta rays		0 2
A	gamma rays		1 3
A	x-rays		0 4
Q	Effective half life of ideal radiopharmaceutical	M	1
A	20*test duration		0 1
A	1.5*test duration		1 2
A	10*test duration		0 3
A	30*test duration		0 4
	Compare to following four , Who is more susceptible to injurious radiation		
Q	effects?	M	1
Α	Children		0 1
A	Adult		0 2
A	Fetus		1 3
A	senior citizen		0 4
Q	Acute effects generally appears within following days of exposure to radiations	М	1
A	90 days	IVI	0 1
A	120 days		0 2
A	150 days		0 3
A	60 days		1 4
Q	1μCi*hr cumulated activity in MIRD is equivalent to	М	1
A	1.332 × 10^2 MBq *sec	141	1 1
A	1.332 × 10^3 MBq *sec		0 2
A	1.332 × 10^5 MBq *sec		0 3
			5

A	1.332 × 10^4 MBq *sec	0	4
Q	Which is more damaging in absorbed dose?	М	1
Α	Gamma radiations	1	1
Α	Alpha particle	0	2
Α	Beta+ particle	0	3
Α	Beta - particle	0	4
Q	External radiations exposure to body is increased by	M	1
A	Increase the distance from the source	0	1
A	Decrease the time of exposure	0	2
A	Use shielding between yourself and the source	0	3
A	Decreasing your distance from the source	1	4
	What is the cumulated activity in the liver for an injection of 100 MBq of a 99mTc-		
	labeled sulfur colloid, assuming that 60% of the injected colloid is trapped by the		
Q	liver and retained there indefinitely? (Half life of 99mTc= 6 hours)	M	1
A	5.18 MBq*hr	0	1
A	5184 MBq*hr	0	2
A	51.84 MBq*hr	0	3
A	518.4 MBq*hr	1	4
Q	Material used in TLD chip for detection of radiations	M	1
A	Lithium Fluoride	1	1
A	Sodium chloride	0	2
A	calcium carbonate	0	3
A	cadmium sulphate	0	4
	Calculate the radiation dose to spleen (sp) to an average adult male for an		
	injection of		
	100MBq of 99mTc sulfur colloid. Assume that 30% of the activity is trapped by		
	spleen (SP) with instantaneous uptake and no biologic excretion.		
Q	(Half life of 99mTc= 6 hours)	M	1
A	9.33 *10^5 MBq.Sec	1	1
A	933 *10^5 MBq.Sec	0	2
A	93.3 *10^5 MBq.Sec	0	3
A	0.933 *10^5 MBq.Sec	0	4
	Biological effects such as Chromosomal aberrations and mutations occurs at		
Q	following level	М	1
A	Cell	1	1
A	Tissue	0	2
Α	Organ Organ	0	3

Α	Whole body	0	4
Q	Amount of dose required to reduction in fertility in male is	М	1
A	3-4 Gy	1	1
A	3-4 mGy	0	2
A	0.3 - 0.4 Gy	0	3
A	0.3 - 0.4 mGy	0	4
Q	Amount of dose required to cause Epilation	M	1
A	0.1-0.2 mGy	0	1
A	0.1-0.2 Gy	0	2
A	2-6 mGy	0	3
A	2-6 Gy	1	4
	The air kerma rate at 10-cm distance from a syringe containing 1GBq of 99mTc.		
Q	(air kerma rate constant Γ is 0.0141 mGy • m2/GBq • hr)	M	1
A	14.1 mGy/hr	0	1
A	1.41 mGy/hr	1	2
A	141 mGy/hr	0	3
A	1410 mGy/hr	0	4
Q	99mTc-DTPA is commonly used in	M	1
A	Bone scans	0	1
A	Renal function	1	2
A	Myocardial perfusion	0	3
A	Cerebral perfusion	0	4
	Which is mechanism of localization for Bone scanning with 99mTc-labeled		
Q	phosphate compound?	M	1
A	antibody-antigen	0	1
A	Simple exchange or diffusion	1	2
A	Cell sequestration	0	3
A	Receptor binding	0	4
Q	Which of the given option is inappropriate Radiation effect on Oral Tissues?	M	1
A	jaw osteoradionecrosis	0	1
A	Xerostomia	0	2
A	Sterility Sterility	1	3
A	Mucositis	0	4
	Time involved in radiation damage of alterations of biologically important		
Q	molecules	М	1
Α	micro second	0	1
Α	upto millisecond	0	2
A	seconds to hours	1	3

Α	hours to years		0 4
	For a dual head gamma camera two simultaneous image can be acquired		
Q	at an angle of	M	1
A	90°		0 1
A	120°		0 2
A	180°		1 3
A	270°		0 4
Q	What does the 'P' in PET stand for?	M	1
A	Positron		1 1
A	Photon		0 2
A	Proton		0 3
A	P-orbital P-orbital		0 4
Q	What makes PET and SPECT so unique when it comes to nuclear imaging?	M	1
A	Do not require dyes		0 1
A	Do not require X – Rays		0 2
A	They show the metabolic functions		1 3
A	They give more details about the imaged organ/tissue		0 4
Q	The most preferred radioisotope element for SPECT is	M	1
A	Mo Mo		0 1
A	W W		0 2
A	Tc Tc		1 3
A	Ba Ba		0 4
Q	As compared to PET, SPECT isotopes have half life.	M	1
A	Longer		1 1
A	Shorter		0 2
A	Equivalent		0 3
A	Unstable		0 4
Q	The detector of PET is made of	M	1
A	Silver		0 1
A	Bismuth Germinate		1 2
A	Tungsten		0 3
A	Lead		0 4
Q	Which of the following radiations are used for imaging purposes?	M	1
A	Alpha		0 1
A	Beta		0 2
A	Gamma		1 3
Α	Delta Delta		0 4

	If a PET scan is being used to detect tumors, an important constituent of the		
Q	injected radioligand will be	M	1
A	glucose	1	1
A	lipids	0	2
Α	keratin	0	3
A	riboflavin	0	4
Q	PET-CT hybrid imaging provides	M	1
A	Only Anatomical information of tissues	0	1
A	Only Physiological information of tissues	0	2
A	Both Anatomical and Physiological information of tissues	1	3
A	None of Anatomical and Physiological information of tissues	0	4
Q	PET-CT hybrid imaging is most commonly used for detection of	M	1
A	Cancer	1	1
A	Bone fracture	0	2
A	Blockages in Blood vessels	0	3
Α	Kidney stone	0	4
	In SPECT, Projections are acquired at defined points during the rotation, typically		
Q	every every	M	1
A	3–6 degrees	1	1
A	10–12 degrees	0	2
A	16–18 degrees	0	3
A	20–22degrees	0	4
Q	Which type of collimator used in SPECT?	M	1
A	Focusing	0	1
A	Diverging	0	_
A	Inverging	0	3
Α	Parallel hole	1	4
Q	In SPECT following isotope used for Thyroid examination	M	1
A	iodine-131	1	1
Α	indium-111	0	2
А	thallium-201	0	3
A	technetium-99m	0	4
_	When both photons from an annihilation event are detected by detectors in		
Q	coincidence is called as	М	1
A	Random coincidence	0	1
A	Scatter coincidence	0	2
A	True coincidence	1	3
A	False coincidence	0	4

Q	Half life of O-15 isotope use in PET is	M	1
A	51 sec	0	1
A	122 sec	1	. 2
A	244 sec	0	3
A	488 sec	0	4
Q	Half life of C-11 isotope use in PET is	M	1
A	5 mins	0	1
A	10 mins	0	2
A	15 mins	0	3
A	20 mins	1	4
Q	Which scanner has detectors in the form ring around the patient?	M	1
A	PET PET	1	. 1
A	SPECT	0	2
A	Gamma Camera	0	3
A	Rectilinear Scanner	0	4
Q	Which of these materials have got lowest density	M	1
A	Air	1	. 1
A	Si(Li)	0	2
A	Ge(Li)	0	3
A	CdTe CdTe	0	4
Q	Identify the detector which has got poor energy resolution	M	1
A	Ionization Chamber	1	. 1
A	Si detector	0	
A	Ge detector	0	
A	Nal(TI) Counter	0	4
Q	For any detector the size of electrical signal is proportional to	M	1
A	amount of radiation deposited	1	
A	detector construction	0	
A	detector size	0	
A	detector cost	0	4
Q	How electron traps can be avoided in semiconductor detectors	M	1
A	Addition of impurity atoms(ex. Li)	1	
A	Operating detector at low temperatures	0	
A	Reducing the size of the detector	0	
A	Increasing the size of the detector	0	•
Q	In RIA a known quantity of antigen is made radioactive by	M	1
Α	Labelling with Radioactive isotopes	1	
A	Fusion process in cyclotron	0	2

A	Mixing with neutron rich element	0	3
Α	Nuclear Fission	0	4
	IN RIA To separate Free Antigens from Antigen-Antibody complex, which of this		
Q	techniques is irrelevant	M	1
Α	Electroporation	1	1
Α	Electrophoresis	0	2
Α	Chromatography	0	3
Α	Ultracentrifugation	0	4
Q	RIA technqiue is used for	M	1
Α	measuring concentration of antibodies	0	1
Α	measuring concentration of antigens	1	2
Α	finding spectrum of radioactive material	0	3
A	detection in gamma ray	0	4
Q	What is the major problem in working with RIA Technique	M	1
A	Process is complicated	0	1
A	Skilled manpower is required	0	2
A	Risk of handling radioactive antigens	1	3
A	RIA Technique is inefficient for detecting radioactivity	0	4
Q	What is Freunds Adjuvant used in RIA	M	1
A	Radioactive antigen	0	1
A	Radioactive antibody	0	2
A	Mixture of mineral oil, waxes, and killed bacilli	1	3
A	Liquid scintillator	0	4
Q	What is the effect of Ionization reaction in atoms	M	1
A	Results in formation of ion pairs	1	1
A	Makes atoms radioactive	0	2
A	Atoms become stable in nature	0	3
A	No change is seens in the atomic structure	0	4
Q	Which of the given operating mode is irrelevant for gas filled detectors	M	1
A	lonization chamber	0	1
A	Proportional counter	0	2
A	GM counter	0	3
A	Quantum counter	1	4
	To use gas filled detector as Ionization chamber what should be typical voltage		
Q	around the anode and cathode plates	M	1
А	voltage should be equal to saturation voltage (Vs)	0	1
А	voltage should be less than saturation voltage (Vs)	0	-
A	voltage should be greater than saturation voltage (Vs)	1	3

A	No voltage source is required	0	4
Q	In ionization chamber how much energy is expelled to produce one ion pair	M	1
A	1 eV	0	1
A	34 eV	1	2
A	100 eV	0	3
A	3400 eV	0	4
Q	What is special feature of a scintillator crystals	M	1
A	Generates equivalent voltage when stuck by light photons	0	1
A	Generates equivalent light photons when stuck by radiation	1	2
A	Can be used for detecting IR and UV Rays too	0	3
A	Work as an efficient temperature sensor	0	4
Q	Dynodes used in PMT are held at	M	1
A	Negative potential	0	1
A	Positive potential	1	2
A	Zero potential	0	3
A	Varying negative potential	0	4
	In scintillation detector instead of PMT which of this component can also be used		
Q	to detect light photons	М	1
A	Si detector	0	1
A	GM Counter	0	2
A	Proportional counter	0	3
A	Si Photodiode	1	4
Q	What is density of NaI(TI) crystals	M	1
A	1.03 g/cm3	0	1
A	3.67 g/cm3	1	2
A	4.51 g/cm3	0	3
A	7.13 g/cm3	0	4
Q	Density of which of these detector is much higher	M	1
A	Gas filled detector	0	1
A	Semiconductor detector	1	2
A	Scintillation detector	0	3
A	Quantum detectors	0	4
Q	Which is this is a semiconductor detector	М	1
A	NaI(TI) Detector	0	1
A	BGO Detector	0	2
A	CsI(TI) Detector	0	3
A	Si Detector	1	4

Q	For a semiconductor detector, to produce 1 ion pair how much energy is expelled	Q	1
A	1 eV	0	1
A	3-5 eV	1	2
A	30-50 eV	0	3
A	300-500 eV	0	4
Q	Which of this is a function of organic solvent in Liquid Scintillation Detector	M	1
A	Dissolves Scintillator material	1	1
A	Doesnot Dissolves Radioactive sample in it	0	2
A	Emits Radiation	0	3
A	Emits secondary ionization	0	4
Q	The fraction of the chemical present in the organ at any time is called as	M	1
A	Uptake of the organ	1	1
A	Intake of the organ	0	2
A	Chemical distribution	0	3
A	Effective concentration	0	4
	Which component is responsible for selecting a radioactive event based on its		
Q	energy	M	1
A	Nal (TI) detector	0	1
A	Amplifier	0	2
A	Pulse Height Analyzer	1	3
A	Analog Ratemeter	0	4
Q	Half life of I-131 is	M	1
A	8.1 days	1	1
A	12 days	0	2
A	6 days	0	3
A	6 hours	0	4
Q	Who is credited for the invention of Gamma Camera	M	1
A	Benedict Cassen	0	1
A	Marie Currie	0	2
A	James Currie	0	3
A	Hal Anger	1	4
Q	What is the purpose of collimators in gamma camera	M	1
A	Absorption of scattered and randomly directed gamma photons	1	1
Α	Transmission of gamma photons to NaI(TI) detectors	0	2
Α	Conversion of gamma photons to electrical signal	0	3
Α	Protect the patient from scattered radiations	0	4

Q	In gamma camera electrical signals from PM Tubes split into	M	1
A	X+, Y+ signal component	0	1
A	X, Y, Z, W signal component	0	2
A	X-, Y- signal component	0	3
A	X,Y, E signal Component	1	4
Q	What is the typical size of NaI(TI) detector used in gamma camera	M	1
A	60 X 40 mm	0	1
A	60 X 40 cm	1	2
A	6 X 4 mm	0	3
A	600 X 400 cm	0	4
	With increasing detector thickness in gamma camera, intrinsic spatial resolution		
Q		M	1
A	Decreases	1	1
A	Increases	0	2
A	Remains same	0	3
A	Becomes Uneven	0	4
Q	What is the reason for poor quality of Radionuclide Images in gamma camera	M	1
A	Inefficient detectors used in Gamma Camera	0	1
A	Potentially useful radiation travelling towards detector are absorbed by collimator	1	2
A	Low dose of Radionuclide given to patient	0	3
A	Inefficient Image Reconstruction Algorithm	0	4
	In an pinhole collimator, if we decrease the distance between object and the		
Q	collimator aperture, image size	M	1
A	Decreases	0	1
A	Increases	1	2
A	Remains same	0	
A	No image is available	0	4
Q	Diverging collimators gives what kind of image	M	1
A	Minified, Non Inverted	1	1
A	Same size, Non Inverted	0	2
A	Magnified, Inverted	0	3
A	Magnified, Non Inverted	0	4
	Which performance characteristic signifies sharpness and details of gamma		
Q	camera images	M	1
Α	Energy Resolution	0	
A	Detection Efficiency	0	2
Α	Intrinsic Spatial Resolution	1	3
A	High Counting Rates	0	4

Q	Higher detection efficiency will be obtained from which detector thickness	М	1
A	0.64 cm	0	1
A	1.27 cm	0	2
A	2.54 cm	0	3
A	5.08 cm	1	4
Q	In gamma camera the Z Signal from Amplifier/ADC represents	M	1
A	Horizontal position of radiation event	0	1
A	Vertical position of radiation event	0	2
A	Energy deposited by the gamma ray	1	3
A	Noise	0	4