University of Mumbai Examination 2020 under cluster 4 (PCE)

Program: BE Computer Engineering

 Curriculum Scheme: Rev 2016Examination: Final Year Semester VII
Course Code: CSC703 and Course Name: AISC
Time: 1 hour
Max. Marks: 50

Q
Ability to learn how to do tasks based on the data given

A
A
A
A
Q for training or initial experience is called? M
Self Organization0
Adaptive Learning 1
Fault tolerance 0
Robustness 0
Core of soft Computing is? MA Fuzzy Networks and Artificial Intelligence0
A Fuzzy Computing, Neural Computing, Genetic Algorithms 1
A Artificial Intelligence and Neural Science 0
A Neural Science and Genetic Science 0Q Which search comes under Local search ?MA* search0
BFS 0A
Hill Climbing SearchA1
DFS 0Q
State space landscape is a term used in MA Local Search algorithm1
A Informed search algorithm 0
A Uninformed search algorithm 0
A Blind search algorithm 0Memory space requirement in hill climbing algorithm is
Q
\qquadMA
Less1
A More 0
A 0A
Q
Zero 0
\qquad are the curves in the search space that leads to
sequence of local maxima M
Plateau0
Ridges 1
Peak 0
Mount 0
Which of the mentioned rules are valid Inference rules? M
Modus Ponens 1
addition 0

A	multiplication		0
A	subdivision		0
Q	Which of the mentioned point correctly defines a quantifier in AI?	M	
A	Quantifiers are numbers ranging from 0-9.		0
A	Quantifiers are the quantity defining terms which are used		1
A	Quantifiers quantize the term between 0 and 1.		0
A	Quantifiers quantize the term between 10 and 100.		0
Q	What are not present in finish actions?	M	
A	Preconditions		0
A	Effect		1
A	Finish		0
A	Cause		0
Q	Which is not Familiar Connectives in First Order Logic? M		
A	and		0
A	iff		1
A	or		0
A	not		0
Q	Three main basic features involved in characterizing membership function are		
A	Core, Support, Boundary		1
A	Fuzzy Algorithm, Neural network, Genetic Algorithm		0
A	Intution, Inference, Rank Ordering		0
A	Weighted Average, center of Sums, Median		0
Q	Fuzzy Logic is	M	
A	Multi Valued Logic		1
A	Binary Logic		0
A	Crisp set Logic		0
A	Two level logic		0
Q	Given $\mathrm{U}=\{1,2,3,4,5,6,7\} \mathrm{A}=\{(3,0.3),(5,0.4),(6$,	M	
A	$\{(2,1),(3,0.3),(4,1),(5,0.6),(7,1)$		0
A	$\{(1,1),(2,1),(3,0.7),(4,1),(5,0.6),(7,1)\}$		1
A	$\{(1,1)(2,1),(3,0.7),(4,0.4),(5,0.6),(6,1),(7,1)$		0
A	$\{(3,0.7),(5,0.6)(6,1),(7,1)\}$		0
Q	the points of fuzzy set A at which $\mu \mathrm{A}(\mathrm{x})=0.5$ are called $\quad \mathrm{M}$		
A	Boundary		0
A	core		0
A	crossover points		1
A	Support		0
Q	Fuzzy relation R is symmetric if ___ M	M	
A	$\mu \mathrm{R}(\mathrm{xi}, \mathrm{xj})=\mu \mathrm{R}(\mathrm{xj}, \mathrm{xi})$		1
A	$\mu R(x i, x i)=1$		0
A	$\mu \mathrm{R}(\mathrm{xj}, \mathrm{xi})=\mu \mathrm{R}(\mathrm{xj}, \mathrm{xi})$		0
A	$\mu R(x i, x i)=\mu R(x j, x j)$		0

Q	Intersection Operation of two fuzzy set is given by \qquad operation	M	
A	max		0
A	abs		0
A	min		1
A	average		0
Q	Complement of Fuzzy set A is given by	M	
A	$1+\mu \mathrm{A}(\mathrm{x})$		0
A	$1 / \mu \mathrm{A}(\mathrm{x})$		0
A	$2 * \mu \mathrm{~A}(\mathrm{x})$		0
A	$1-\mu \mathrm{A}(\mathrm{x})$		1
Q	\qquad are designed to solve complex problems by reasoning about knowledge, represented primarily as if-then rules rather than through conventional procedural code.	M	
A	neural network		0
A	Perceptrons		0
A	Expert systems		1
A	Quantization		0
Q	\qquad is used for topology optimization i.e. to select number of hidden layers, number of hidden nodes and interconnection pattern for ANN.	M	
A	Neuro-fuzzy system		0
A	Forward neural network		0
A	Neural network		0
A	Genetic algorithm		1
Q	What Perceptron is? M	M	
A	a single layer feed-forward neural network with pre-proce:		1
A	an auto-associative neural network		0
A	a double layer auto-associative neural network		0
A	a neural network that contains feedback		0
Q	Signal transmission at synapse is a	M	
A	Physical process		0
A	Chemical Procees		1
A	Biological process		0
A	Activation		0
Q	Backpropogation is applied for which type of network architecture	M	
A	Single layer feed forward		0
A	Single layer feedback network		0
A	Multilayer feedback network		0
A	Multilayer feed forward network		1
Q	Why is the XOR problem exceptionally interesting to neural network researchers	M	
A	Because it can be expressed in a way that allows you to us		0
A	Because it is complex binary operation that cannot be solv		0
A	Because it can be solved by a single layer perceptron		0

A	Because it is the simplest linearly inseparable problem tha		
Q	The process of adjusting the weight is known as?	M	
A	Activation		0
A	Synchronisation	0	
A	Learning		1
A	Classification	0	
Q	What is an activation value?	M	
A	Weighted sum of inputs		1
A	Threshold value	0	
A	Main input to neuron	0	
A	Function	0	

