University of Mumbai Online Examination 2020

Program: BE Chemical Engineering

Curriculum Scheme: Revised 2016

Examination: Fourth Year Semester VII

Course Code: CHC703

Course Name: Process Dynamics and Control

Time: 1 hour

Max. Marks: 50

Note to the students:- All Questions are compulsory and carry equal marks .

Q1.	The process variables that can be adjusted in order to keep the controlled
	variables at or near their set points
Option A:	Manipulated variable
Option B:	Controlled variable
Option C:	Disturbance variable
Option D:	Load variable
Q2.	For a proportional controller the controller output will be proportional to
Option A:	Load variable
Option B:	Measured variable value
Option C:	Disturbance value
Option D:	Deviation from the set point
Q3.	If the disturbance variable is measured, the control strategy is called as
Option A:	Feedback control
Option B:	Feed forward control
Option C:	Inferential control

Option D:	D: Cascade control	
Q4.	A stirred-tank blending process with a constant liquid holdup of 2 m3 is used to blend two streams whose densities are both approximately 900 kg/m3. The density does not change during mixing. Assume that the process has been operating for a long period of time with flow rates of w1 = 500 kg/min and w2 = 200 kg/min, and feed compositions (mass fractions) of x1 = 0.4 and x2 = 0.75. What is the steady-state value of x?	
Option A:	0.5	
Option B:	1	
Option C:	0.8	
Option D:	0.3	
Q5.	Time constant of Transportation lag is	
Option A:	e ^{-ts}	
Option B:	e ^{ts}	
Option C:	$1 + e^{-\tau s}$	
Option D:	$1-e^{-\tau s}$	
Q6.	Transfer function of two tank interacting system relating height of liquid in second tank to inlet flow to first tank, where τ_1 and τ_2 are time constants of first and second tanks respectively and R_1 and R_2 are resistances of outlet valve of first and second tanks respectively.	
Option A:	$H_2(s)/Q(s) = R_2/[\tau_1 \tau_2 s^2 + (\tau_{1+} \tau_2)s + 1]$	
Option B:	$H_2(s)/Q(s) = R_2/[\tau_1 \tau_2 s^2 + (\tau_{1+} \tau_2 + A_1 R_2)s + 1]$	
Option C:	$H_2(s)/Q(s) = R_1/[\tau_1 \tau_2 s^2 + (\tau_{1+} \tau_2 + A_1R_2)s + 1]$	
Option D:	$H_2(s)/Q(s) = R_1/[\tau_1 \tau_2 s^2 + (\tau_{1+} \tau_2)s + 1]$	
Q7.	A linear system at rest is subject to an input signal $R(t)=1-e^{-2t}$. The response of the system for t >0 is given by $C(t)=1-e^{-3t}$. The transfer function of the	

	system is:	
Option A:	3(s+2)/2(s+3)	
Option B:	(s+2)/(s+3)	
Option C:	2(s+3)/(s+2)	
Option D:	(s+3)/2(s+2)	
Q8.	For a second order under damped step response, Decay ratio is	
Option A:	1/ Over shoot	
Option B:	(Overshoot) ^{1/2}	
Option C:	(Over shoot) ²	
Option D:	$1/(\text{Overshoot})^2$	
Q9.	If two tanks are connected in series in interacting manner, the transfer function relating the output of second tank to the input to first tank is of order.	
Option A:	zero order	
Option B:	first order	
Option C:	second order	
Option D:	third order	
Q10.	For undamped second order response, damping coefficient (ξ) is	
Option A:	equal to1	
Option B:	greater than 1	
Option C:	less than 1	
Option D:	Equal to 0	
SPace D.		
Q11.	In Regulator problem,	

Option A: Load is variable but set point is variable Option B: Load is constant but set point is variable Option D: Load and set point, both are constants Option D: Load and set point, both are variables Q12. In proportional control, offset is defined as Option A: Steady state error in manipulated variable Option D: unsteady state error in controlled variable Option D: Steady state error in controlled variable Option A: Proportional integral control Option A: Proportional integral control Option B: Proportional derivative control Option D: Proportional integral derivative control Option A: Proportional integral derivative control Option A: Proportional integral derivative control Option A: P(s)/ $\epsilon(s) = Kc[1+\tau_{D} s]$ Option B: P(s)/ $\epsilon(s) = Kc[1-\tau_{D} s]$ Option C: P(s)/ $\epsilon(s) = Kc[1-\tau_{D} s]$			
Option C: Load and set point, both are constants Option D: Load and set point, both are variables Q12. In proportional control, offset is defined as Option A: Steady state error in manipulated variable Option B: unsteady state error in controlled variable Option D: Steady state error in controlled variable Option D: unsteady state error in controlled variable Option D: Steady state error in controlled variable Option D: Steady state error in controlled variable Q13. Control which is suitable economically if no offset and no oscillations is tolerable Option B: Proportional control Option C: Proportional control Option C: Proportional control Option C: Proportional derivative control Option D: Proportional integral derivative control Q14. Transfer function for a Proportional Derivative controller is Option C: $P(s)/\epsilon(s) = Kc[1+1/(\tau_D s)]$ Option C: $P(s)/\epsilon(s) = Kc[1-\tau_D s]$ Option D: $P(s)/c(s) = Kc[1-\tau_D s]$ Option D: $P(s)/c(s) = Kc[1-\tau_D s]$ Option D: $P(s)/c(s) = Kc[1-\tau_D s]$	Option A:	Load is variable but set point is constant	
Option D: Load and set point, both are variables Q12. In proportional control, offset is defined as Option A: Steady state error in manipulated variable Option B: unsteady state error in controlled variable Option D: Steady state error in controlled variable Option D: Steady state error in controlled variable Option D: Steady state error in controlled variable Q13. Control which is suitable economically if no offset and no oscillations is tolerable Option A: Proportional integral control Option B: Proportional control Option C: Proportional derivative control Option D: Proportional derivative control Option C: Proportional integral derivative control Option A: Proportional derivative control Q14. Transfer function for a Proportional Derivative controller is Option B: P(s)/c(s) = Kc[1+t/t _D s] Option C: P(s)/c(s) = Kc[1-t/t _D s] Option C: P(s)/c(s) = Kc[1-t_D s] Q14. Transfer function for a Proportional Derivative controller is Option C: P(s)/c(s) = Kc[1-t_D s] Option D: P(s)/c(s) = Kc[1-t_D s]	Option B:	Load is constant but set point is variable	
Q12. In proportional control, offset is defined as Option A: Steady state error in manipulated variable Option B: unsteady state error in controlled variable Option C: unsteady state error in controlled variable Option D: Steady state error in controlled variable Q13. Control which is suitable economically if no offset and no oscillations is tolerable Option A: Proportional integral control Option B: Proportional control Option C: Proportional control Option D: Proportional derivative control Option D: Proportional derivative control Option D: Proportional integral derivative control Option A: P(s)/ $\epsilon(s) = Kc[1+1/(\tau_D s)]$ Option B: P(s)/ $\epsilon(s) = Kc[1+1/(\tau_D s)]$ Option B: P(s)/ $\epsilon(s) = Kc[1+1/(\tau_D s)]$ Option B: P(s)/ $\epsilon(s) = Kc[1-1/(\tau_D s)]$ Option C: P(s)/ $\epsilon(s) = Kc[1-\tau_D s]$ Option D: P(s)/ $\epsilon(s) = Kc[1-\tau_D s]$ Option D: P(s)/ $\epsilon(s) = Kc[1-\tau_D s]$ Q15. Amplitude Ratio of time lag is	Option C:	Load and set point, both are constants	
Option A:Steady state error in manipulated variableOption B:unsteady state error in controlled variableOption C:unsteady state error in controlled variableOption D:Steady state error in controlled variableQ13.Control which is suitable economically if no offset and no oscillations is tolerableOption A:Proportional integral controlOption B:Proportional controlOption C:Proportional derivative controlOption D:Proportional derivative controlOption A:Proportional derivative controlOption A:Proportional integral derivative controlOption B:Proportional integral derivative controlOption D:Proportional integral derivative controlOption B:P(s)/ $\epsilon(s) = Kc[1+1/(\tau_D s)]$ Option A:P(s)/ $\epsilon(s) = Kc[1+\tau_D s]$ Option C:P(s)/ $\epsilon(s) = Kc[1-\tau_D s]$ Option C:P(s)/ $\epsilon(s) = Kc[1-\tau_D s]$ Option D:P(s)/ $\epsilon(s) = Kc[1-\tau_D s]$ Q15.Amplitude Ratio of time lag is	Option D:	Load and set point, both are variables	
Option B:unsteady state error in controlled variableOption C:unsteady state error in controlled variableOption D:Steady state error in controlled variableQ13.Control which is suitable economically if no offset and no oscillations is tolerableOption A:Proportional integral controlOption B:Proportional controlOption C:Proportional derivative controlOption D:Proportional derivative controlOption A:Proportional derivative controlOption A:Proportional derivative controlOption B:Proportional derivative controlOption B:Proportional integral derivative controlOption B:Proportional integral derivative controlOption B:P(s)/ $\epsilon(s) = Kc[1+1/(\tau_D s)]$ Option B:P(s)/ $\epsilon(s) = Kc[1+\tau_D s]$ Option C:P(s)/ $\epsilon(s) = Kc[1-\tau_D s]$ Option D:P(s)/ $\epsilon(s) = Kc[1-\tau_D s]$ Q15.Amplitude Ratio of time lag is	Q12.	In proportional control, offset is defined as	
Option C:unsteady state error in manipulated variableOption D:Steady state error in controlled variableQ13.Control which is suitable economically if no offset and no oscillations is tolerableOption A:Proportional integral controlOption B:Proportional controlOption C:Proportional derivative controlOption D:Proportional integral derivative controlOption A:Proportional integral derivative controlOption D:Proportional integral derivative controlOption B:Proportional integral derivative controlOption B:Proportional integral derivative controlOption B:Proportional integral derivative controlOption B:Prostect(1+1/(t_D s)]Option B:P(s)/ ϵ (s) = Kc[1+1/(t_D s)]Option B:P(s)/ ϵ (s) = Kc[1-1/(t_D s)]Option D:P(s)/ ϵ (s) = Kc[1-1/(t_D s)]Option D:P(s)/ ϵ (s) = Kc[1-1/(t_D s)]Option D:Q15.Amplitude Ratio of time lag is	Option A:	Steady state error in manipulated variable	
Option D:Steady state error in controlled variableQ13.Control which is suitable economically if no offset and no oscillations is tolerableOption A:Proportional integral controlOption B:Proportional controlOption C:Proportional derivative controlOption D:Proportional integral derivative controlOption A: $P(s)/\epsilon(s) = Kc[1+1/(\tau_D s)]$ Option A: $P(s)/\epsilon(s) = Kc[1+1/(\tau_D s)]$ Option B: $P(s)/\epsilon(s) = Kc[1-1/(\tau_D s)]$ Option C: $P(s)/\epsilon(s) = Kc[1-1/(\tau_D s)]$ Option D: $P(s)/\epsilon(s) = Kc[1-\tau_D s]$ Option D: $P(s)/\epsilon(s) = Kc[1-\tau_D s]$ Q15.Amplitude Ratio of time lag is	Option B:	unsteady state error in controlled variable	
Q13.Control which is suitable economically if no offset and no oscillations is tolerableOption A:Proportional integral controlOption B:Proportional controlOption C:Proportional derivative controlOption D:Proportional integral derivative controlQ14.Transfer function for a Proportional Derivative controller isOption A: $P(s)/\epsilon(s) = Kc[1+1/(\tau_D s)]$ Option B: $P(s)/\epsilon(s) = Kc[1-1/(\tau_D s)]$ Option C: $P(s)/\epsilon(s) = Kc[1-1/(\tau_D s)]$ Option D: $P(s)/\epsilon(s) = Kc[1-\tau_D s]$ Q15.Amplitude Ratio of time lag is	Option C:	unsteady state error in manipulated variable	
tolerableOption A:Proportional integral controlOption B:Proportional controlOption C:Proportional derivative controlOption D:Proportional integral derivative controlQ14.Transfer function for a Proportional Derivative controller isOption A: $P(s)/\epsilon(s) = Kc[1+1/(\tau_D s)]$ Option B: $P(s)/\epsilon(s) = Kc[1+\tau_D s]$ Option C: $P(s)/\epsilon(s) = Kc[1-\tau_D s]$ Option D: $P(s)/\epsilon(s) = Kc[1-\tau_D s]$ Q15.Amplitude Ratio of time lag is	Option D:	Steady state error in controlled variable	
Option B:Proportional controlOption C:Proportional derivative controlOption D:Proportional integral derivative controlQ14.Transfer function for a Proportional Derivative controller isOption A: $P(s)/\epsilon(s) = Kc[1+1/(\tau_D s)]$ Option B: $P(s)/\epsilon(s) = Kc[1+\tau_D s]$ Option C: $P(s)/\epsilon(s) = Kc[1-1/(\tau_D s)]$ Option D: $P(s)/\epsilon(s) = Kc[1-\tau_D s]$ Option D: $P(s)/\epsilon(s) = Kc[1-\tau_D s]$ Q15.Amplitude Ratio of time lag is	Q13.		
Option C:Proportional derivative controlOption D:Proportional integral derivative controlQ14.Transfer function for a Proportional Derivative controller isOption A: $P(s)/\epsilon(s) = Kc[1+1/(\tau_D s)]$ Option B: $P(s)/\epsilon(s) = Kc[1+\tau_D s]$ Option C: $P(s)/\epsilon(s) = Kc[1-1/(\tau_D s)]$ Option D: $P(s)/\epsilon(s) = Kc[1-\tau_D s]$ Q15.Amplitude Ratio of time lag is	Option A:	Proportional integral control	
Option D:Proportional integral derivative controlQ14.Transfer function for a Proportional Derivative controller isOption A: $P(s)/\epsilon(s) = Kc[1+1/(\tau_D s)]$ Option B: $P(s)/\epsilon(s) = Kc[1+\tau_D s]$ Option C: $P(s)/\epsilon(s) = Kc[1-1/(\tau_D s)]$ Option D: $P(s)/\epsilon(s) = Kc[1-\tau_D s]$ Q15.Amplitude Ratio of time lag is	Option B:	Proportional control	
Q14.Transfer function for a Proportional Derivative controller isOption A: $P(s)/\epsilon(s) = Kc[1+1/(\tau_D s)]$ Option B: $P(s)/\epsilon(s) = Kc[1+\tau_D s]$ Option C: $P(s)/\epsilon(s) = Kc[1-1/(\tau_D s)]$ Option D: $P(s)/\epsilon(s) = Kc[1-\tau_D s]$ Q15.Amplitude Ratio of time lag is	Option C:	Proportional derivative control	
Option A: $P(s)/\epsilon(s) = Kc[1+1/(\tau_D s)]$ Option B: $P(s)/\epsilon(s) = Kc[1+\tau_D s]$ Option C: $P(s)/\epsilon(s) = Kc[1-1/(\tau_D s)]$ Option D: $P(s)/\epsilon(s) = Kc[1-\tau_D s]$ Q15.Amplitude Ratio of time lag is	Option D:	Proportional integral derivative control	
Option B: $P(s)/\epsilon(s) = Kc[1 + \tau_D s]$ Option C: $P(s)/\epsilon(s) = Kc[1 - 1/(\tau_D s)]$ Option D: $P(s)/\epsilon(s) = Kc[1 - \tau_D s]$ Q15.Amplitude Ratio of time lag is	Q14.	Transfer function for a Proportional Derivative controller is	
Option C: $P(s)/\epsilon(s) = Kc[1-1/(\tau_D s)]$ Option D: $P(s)/\epsilon(s) = Kc[1-\tau_D s]$ Q15.Amplitude Ratio of time lag is	Option A:	$P(s)/\epsilon(s) = Kc[1+1/(\tau_D s)]$	
Option D: $P(s)/\epsilon(s) = Kc[1 - \tau_D s]$ Q15. Amplitude Ratio of time lag is	Option B:	$P(s)/\epsilon(s) = Kc[1+\tau_D s]$	
Q15. Amplitude Ratio of time lag is	Option C:	$P(s)/\epsilon(s) = Kc[1-1/(\tau_D s)]$	
	Option D:	$P(s)/\epsilon(s) = Kc[1-\tau_D s]$	
Option A: 0	Q15.	Amplitude Ratio of time lag is	
	Option A:	0	

Option B:	1	
Option C:	ω	
Option D:	-1	
Q16.	Bode diagram are generated from output response of system subjected to which of the following input?	
Option A:	Impulse	
Option B:	Step	
Option C:	Sinusoidal	
Option D:	Ramp	
Q17.	The bode plot of the system gives values of Gain Margin (GM) is 20 decibel and Phase margin (PM) is 39°, then the respective system is	
Option A:	stable	
Option B:	unstable	
Option C:	oscillatory	
Option D:	oscillatory with high amplitude	
Q18.	For Complex model which modelling technique is mostly preferred?	
Option A:	Theoretical Modelling	
Option B:	Empirical Modelling	
Option C:	Stochastic Modelling	
Option D:	Rigorous Modelling	
Q19.	Regression provides unique solution for the model parameters if?	
_		
Option A:	Number of data points is equal to number of model parameters	
Option B:	Number of data points is more the number of model parameters	
Option C:	Number of data points is less than the number of model parameters	

Option D:	Number of data points is square the number of model parameters	
Q20.	Bode diagram is plot of	
Option A:	$\log (AR)$ vs. $\log(\omega)$ and $\log (\phi)$ vs. $\log (\omega)$	
Option B:	$\log (AR)$ vs. (ω) and $\log (\phi)$ vs. (ω)	
Option C:	(AR) vs. log (ω) and (ϕ) vs. (ω)	
Option D:	$\log (AR)$ vs. $\log (\omega)$ and (ϕ) vs. $\log (\omega)$	
Q21.	The ISE criterion is used when?	
Option A:	large errors are present	
Option B:	small errors are present	
Option C:	long persiting error	
Option D:	weighted error are present	
Q22.	If the process of interest can be approximated by a first-order or second- order linear model, the model parameters can be obtained by inspection of	
Option A:	Process Reaction Curve	
Option B:	Process Intensification	
Option C:	Process Linearization	
Option D:	Process Curve	
Q23.	Amplitude Ratio for 1st and 2nd order system is	
Option A:	>1	
Option B:	< 1	
Option C:	= 1	
Option D:	= 0	

Q24.	Disadvantage of proportional control action is
Option A:	A more oscillatory behavior
Option B:	Greater value of offset
Option C:	More time to control output
Option D:	Unstable response
Q25.	The major disadvantage of the time-delay estimation method is?
Option A:	Locating Point of inflection
Option B:	Slope of noise
Option C:	Time constant
Option D:	Small gain

University of Mumbai Online Examination 2020

Program: BE Chemical Engineering

Curriculum Scheme: Revised 2016

Examination: Fourth Year Semester VII

Course Code: CHC703

Course Name: Process Dynamics and Control

Time: 1 hour

Max. Marks: 50

Question	Correct Option
	(Enter either 'A' or 'B' or 'C' or 'D'
Q1.	A
Q2.	D
Q3.	В
Q4	A
Q5	A
Q6	В
Q7	A
Q8.	с
Q9.	с
Q10.	D
Q11.	A
Q12.	D
Q13.	D
Q14.	В
Q15.	В

Q16.	С
Q17.	А
Q18.	В
Q19.	А
Q20.	D
Q21.	А
Q22.	А
Q23.	В
Q24.	В
Q25.	А