University of Mumbai Examination 2020 under cluster 4 (PCE)

Program: BE Computer Engineering Curriculum Scheme: Rev 2012 Examination: Final Year Semester VII

Course Code: CPC703 and Course Name: AI

Time: 1 hour Max. Marks: 50

	A.M. turing developed a technique for determining whether a computer could or could not demonstrate the		
	artificial Intelligence, Presently, this technique is called		
Q	artificial intelligence, Presently, this teeninque is carred	M	
A	Turing Test		1
A	Algorithm		0
A	Boolean Algebra		0
A A A	Logarithm		0
O	Face recognition system is based on	M	
Q A	applied AI		1
A	parallel AI		0
A	serial AI		0
A	strong AI		0
	Which instruments are used for perceiving and acting		
Q	upon the environment?	M	
A	Sensors and Actuators		1
A	Sensors		0
A	Perceiver		0
A	Agent		0
	How many types of agents are there in artificial		
Q	intelligence?	M	
A	1		0
A	2		0
A	3		0
A	4		1
	Which element in the agent are used for selecting		
Q	external actions?	M	
A	Perceive		0
A	Performance		1
A	Learning		0
A	Actuator		0
Q	In which agent does the problem generator is present?	M	
A	Learning agent		1
A A A	observing agent		0
	Reflex agent		0
A	Complex agent		0

Q	Which environment is called as semi dynamic?	M	
A	Environment does not change with the passage of time		0
A	Agent performance changes		0
A	Environment will be changed		0
	Environment does not change with the passage of time,		
A	but Agent performance changes		1
-	Which search is implemented with an empty FIFO		
Q	queue.	M	0
A	DFS DES		0
A A	BFS Bidirectional		1
A	DFID		0
A	DI ID		U
	Consider the following statement: "The search first		
	begins from the root node and the first one of the child		
	node's sub-tree is completely traversed. That is, first all		
	the one-sided nodes are checked, and then the other		
	sided nodes are checked." Which search algorithm is		
Q	described in the above definition?	M	
A	The Breadth First Search (BFS)		0
A	The Depth First Search (DFS)		1
A	The A* search		0
A	DFID		0
0	A search algorithm takesas Input and returns	M	
Q A	as output	M	0
A	Input, output Problem , Solution		1
A	Solution, Problem		0
A	Parameters, Sequence of Actions		0
	In roulette wheel selection individuals are selected with		
Q	following criteria	M	
A	Best Fitness value		0
A	First fitness value		0
A	random		1
A	Last fitnes value		0
Q	In A* evaluation function is	M	
A	Heuristic function		0
A	Path cost from start node to current node		0
A	Path cost from start node to current node + Heuristic		1
A A	cost Average path cost + heuristic cost		1
Q	The most fundamental type of logic is	M	U
A	Higher Order Logic	171	0
A	FOL		0
A	Propositional Logic		1
A	Probabilistic logic		0

Q	The connective symbol for Conjunction is	M	
A	V		0
A	^		1
A	<		0
A	>		0
	is a function that adds knowledge K to the		
Q	knowledge base in Knowledge based agent.	M	
A	ACTION		0
A	TELL		1
A	ASK		0
A	TAB		0
Q	Backward Chaining is a	M	
A	Data-driven approach		0
A	Query-driven approach		0
A	Goal-driven approach		1
A	Heuristic-driven approach		0
	To eliminate the inaccuracy problem in planning		
	problem or partial order planning problem we can use		
Q	data structure/s.	M	
A	Stacks		0
A	Queue		0
A	BST (Binary Search Tree)		0
A	Planning Graphs		1
Q	Automated vehicle is an example of	M	
A	Supervised learning		1
A	Unsupervised learning		0
A	Active learning		0
A	Reinforcement learning		0
	Data, information, and past experience combined		
Q	together are termed as	M	
A	Inference		0
A	Acquisition		0
A	vision		0
A	knowledge		1
	He lifted the beetle with red cap. contain which type of		
Q A	ambiguity ?	M	
	Lexical ambiguity		0
A	Syntax Level ambiguity		1
A	Referential ambiguity		0
A	Semantic level ambiguity		0
	Many words have more than one meaning; we have to		
	select the meaning which makes the most sense in		
Q	context. This can be resolved by	M	
A	Fuzzy Logic		0
A	Word Sense Disambiguation		1
A	Shallow Semantic Analysis		0

1	4	Neural Network		0
(Q	What is Machine Translation?	M	
	A	Converts one human language to another		1
I	A	Converts human language to machine language		0
I	A	Converts any human language to English		0
I	A	Converts Machine language to human language		0
		In real world problems, due to partially observable or		
		non-deterministic nature of task environments, agents		
(Q	may need to handle	M	
I	A	Uncertainty		1
1	A	Unpecularity		0
1	A	Unclarity		0
I	A	Unability		0
(Q	The state of a action in a state space is formulated by	M	
I	A	Intermediate state		0
I	A	Initial state		0
		Successor function, which takes current action and		
I	A	returns next imediate state		1
I	A	Goal state		0
(Q	Which is a best way to go for Game playing problem	M	
I	A	Linear approach		0
I	A	Heuristic approach		1
I	A	Random approach		0
I	A	Optimal Approach		0