University of Mumbai Online Examination 2020

Program: BE Chemical Engineering

Curriculum Scheme: Revised 2012

Examination: Fourth Year Semester VII

Course Code: CHC703

Course Name: Process Dynamics and Control

Time: 1 hour

Max. Marks: 50

Note to the students:- All Questions are compulsory and carry equal marks .

Q1.	The transfer function of a system is	
Option A:	the ratio of Laplace transform of deviation variable of output to that of input	
Option B:	the ratio of Laplace transform of deviation variable of input to that of output	
Option C:	the ratio of deviation variable of output to that of input	
Option D:	the ratio of deviation variable of input to that of output	
Q2.	Write the steady state component balance of a blending model with inlet streams with mass flow rates w_1 and w_2 and mass fractions x_1 and x_2 respectively. The outlet mass flow rate is w with mass fraction x .	
Option A:	$w_1+w_2=w$	
Option B:	$w_1x_1 + w_2x_2 = wx$	
Option C:	$w_1+w_2=wx$	
Option D:	$w_1x_1+w_2x_2=0$	
Q3.	Guidelines have been proposed for the selection of Controlled variables from among the input variables	
Option A:	Select inputs that have large effects on controlled variables.	

Option B:Choose inputs that rapidly affect the controlled variables.Option C:Choose output variables that have favorable dynamic and static characteristics.Option D:The manipulated variables should affect the controlled variables directly rather than indirectlyQ4.The model developed using principles of chemistry, physics and biology only known asOption A:Theoretical modelsOption D:Empirical modelsOption D:Semi empirical modelsOption D:Experimentally fitted data modelQ5.An input to a system, which increases with timeOption B:impulse inputOption C:step inputOption D:ramp input	
characteristics.Option D:The manipulated variables should affect the controlled variables directly, rather than indirectlyQ4.The model developed using principles of chemistry, physics and biology only known asOption A:Theoretical modelsOption B:Empirical modelsOption D:Semi empirical modelsOption D:Experimentally fitted data modelQ5.An input to a system, which increases with timeOption A:step inputOption C:step input	
rather than indirectlyQ4.The model developed using principles of chemistry, physics and biology only known asOption A:Theoretical modelsOption B:Empirical modelsOption C:Semi empirical modelsOption D:Experimentally fitted data modelQ5.An input to a system, which increases with timeOption A:step inputOption B:impulse inputOption C:sinusoidal input	
only known asOption A:Theoretical modelsOption B:Empirical modelsOption C:Semi empirical modelsOption D:Experimentally fitted data modelQ5.An input to a system, which increases with timeOption A:step inputOption B:impulse inputOption C:sinusoidal input	
Option B:Empirical modelsOption C:Semi empirical modelsOption D:Experimentally fitted data modelQ5.An input to a system, which increases with timeOption A:step inputOption B:impulse inputOption C:sinusoidal input	
Option C:Semi empirical modelsOption D:Experimentally fitted data modelQ5.An input to a system, which increases with timeOption A:step inputOption B:impulse inputOption C:sinusoidal input	
Provide Option D:Experimentally fitted data modelQ5.An input to a system, which increases with timeOption A:step inputOption B:impulse inputOption C:sinusoidal input	
Q5.An input to a system, which increases with timeOption A:step inputOption B:impulse inputOption C:sinusoidal input	
Option A: step input Option B: impulse input Option C: sinusoidal input	
Option B: impulse input Option C: sinusoidal input	
Option C: sinusoidal input	
Option D: ramp input	
Q6. Phase angle (φ) of the sinusoidal response of a first order system is given	ı by
Option A: $\sin^{-1}(-\omega\tau)$	
Option B: $\tan(-\omega\tau)$	
Option C: $\tan^{-1}(\omega \tau)$	
Option D: $\tan^{-1}(-\omega\tau)$	
Q7. In a blending system, if the holdup volume of the tank is 4 ft ³ and volum flow to tank is 8 ft ³ /min, then what is the time constant of the system?	etric
Option A: 1 min	
Option B: 2 min	

Option C:	0.5 min	
Option D:	0.25 min	
Q8.	Control which is suitable economically if no offset and no oscillations is tolerable	
Option A:	Proportional integral control	
Option B:	Proportional control	
Option C:	Proportional derivative control	
Option D:	Proportional integral derivative control	
Q9.	If two first order systems are connected in non- interacting manner, then overall transfer function is	
Option A:	Product of transfer functions of individual systems	
Option B:	Ratio of transfer function of second system to transfer function of first system	
Option C:	Sum of transfer functions of individual systems	
Option D:	Ratio of transfer function of first system to transfer function of second system	
Q10.	A first order liquid level system is having outlet valve resistance R as 0.4 ft/cfm and cross-sectional area A of tank as $2ft^2$. What is the time constant of the system? (cfm is ft^3/min)	
Option A:	1 min	
Option B:	0.8 min	
Option C:	2 min	
Option D:	4 min	
Q11.	The degree of freedom is given as (where N_F = Degree of freedom, N_V =	
	Number of variable, $N_E =$ Number of equation)	

Option A:	$N_F = N_V - N_E$
Option B:	$N_F = N_V + N_E$
Option C:	$N_F = N_V - N_E + 2$
Option D:	$N_F = N_V + N_E + 2$
Q12.	$_$ can be estimated from a step response plot using the value of <i>t</i> at which the response is 63.2% where all carry usual notations of first order system
Option A:	Gain
Option B:	Time constant
Option C:	Transfer function
Option D:	Input
Q13.	The addition of integral action to proportional control
Option A:	Increases the value of offset
Option B:	take the controlled variable to new steady state
Option C:	eliminates the offset
Option D:	Arrest the Rise of controlled variable more quickly
Q14.	Transfer function for a Proportional controller is
Option A:	$P(s)/\epsilon(s) = Kc[(1/\tau_{I}s) + \tau_{D}s]$
Option B:	$P(s)/\epsilon(s) = Kc$
Option C:	$P(s)/\epsilon(s) = Kc(1/\tau_1 s)$
Option D:	$P(s)/\epsilon(s) = Kc[1 - (1/\tau_I s) + \tau_D s]$
Q15.	In a control system, generally control valve is used as
Option A:	controller

Option B:	measuring element
Option C:	process
Option D:	final control element
Q16.	If controlled variable is equal to set point in a feedback control system, then
Option A:	error =1
Option B:	error = 0.
Option C:	error >1
Option D:	error < 1
017	
Q17.	According to the bode stability criteria, for stable system relation between Gain Margin (GM) and Phase Margin is represented by
Option A:	PM =GM
Option B:	PM > GM
Option C:	PM < GM
Option D:	PM =1/GM
Q18.	The characteristic equation for negative feedback control system is,
	if open loop transfer function is G(s)
Option A:	1+G(s)=0
Option B:	1-G(s) =0
Option C:	1/G(s) = 0
Option D:	G(s) =0
Q19.	The number of sign changes in first column of Routh array indicates the number of roots lying in
Option A:	center of the s-plane

Option B:	right half of s-plane
Option C:	left half of s-plane
Option D:	origin of s-plane
Q20.	Among the mentioned integral control criteria for controller design which is most preferred?
Option A:	ISE
Option B:	IAE
Option C:	ISTE
Option D:	ITAE
Q21.	If the process of interest can be approximated by a first-order or second- order linear model, the model parameters can be obtained by inspection of
Option A:	Process Reaction Curve
Option B:	Process Intensification
Option C:	Process Linearization
Option D:	Process Curve
022	Dhaga angla (\$) ang a in Dada nlatin mada an a'ang ang ang ang a
Q22.	Phase angle ($^{\phi}$) vs. ω in Bode plot is made on a\an graph paper.
Option A:	ordinary
Option B:	semi-log
Option C:	log-log
Option D:	triaxial
Q23.	Amplitude Ratio for 2nd order system is
Option A:	Less than 1
Option B:	Greater than 1

Option C:	Equal to1	
Option D:	Equal to 0	
Q24.	The least-squares solution provides for the unknown model parameters	
Option A:	Point estimate	
Option B:	Integral solution	
Option C:	Differential solution	
Option D:	Approximate solution	
Q25.	Parameter estimation on model development using regression is based on?	
Option A:	Maximisation of difference between model predictions and data.	
Option B:	Model predictions are varying exponential as data calculated.	
Option C:	Minimisation of difference between model predictions and data.	
Option D:	Model predictions are square of the data.	

University of Mumbai Online Examination 2020

Program: BE Chemical Engineering

Curriculum Scheme: Revised 2012

Examination: Fourth Year Semester VII

Course Code: CHC703

Course Name: Process Dynamics and Control

Time: 1 hour

Max. Marks: 50

Question	Correct Option
	(Enter either 'A' or 'B' or 'C' or 'D'
Q1.	A
Q2.	В
Q3.	С
Q4	A
Q5	В
Q6	D
Q7	С
Q8.	D
Q9.	A
Q10.	В
Q11.	A
Q12.	В
Q13.	С
Q14.	В
Q15.	D

Q16.	В
Q17.	В
Q18.	А
Q19.	В
Q20.	D
Q21.	А
Q22.	В
Q23.	А
Q24.	A
Q25.	С