Q=QUESTION	question_description	question_explanation	question_type	question_difficulty	
A=ANSWER	answer_description	answer_explanation	answer_isright	answer_position	
Q	Productivity is ratio of		М		1
A	Input to Output			0	1
A	Output to Input			1	2
A	Quality to Cost			0	3
A	Cost to Quality			0	4
0	Input Resource to carry out Manufacturing		NA		1
Q	is				ľ
A	Raw Material			1	1
A	Finished Goods			0	2
A	Sales Returns			0	3
A	Shortage of Inventory			0	4
Q	Goal of Industrial Engineering is to		М		1
A	Improve Productivity			1	1
A	Decrease Human Resource			0	2
A	Increase Cost			0	3
A	Lower Product Value			0	4
Q	Break-Even point implies		М		1
A	cost equals revenue			1	1
A	cost is less than revenue			0	2
A	profit is greater than loss			0	3
A	cost is greater than revenue			0	4
0	Industrial Engineering received		NA		1
Q	contributions from				
A	Captain America			0	1
A	Sherlock Holmes			0	2
A	John Wick			0	3
A	F W Taylor			1	4
0	Which of the following factors could be		M		1
4	intangible in Productivity Studies				
A	Cost			0	1

A	Profit	0	2
A	Customer Delight	1	. 3
A	Revenue	C	4
Q	Productivity Improvement Techniques	М	1
A	Decrease Throughput Time	1	. 1
A	Decrease Revenue	C	2
A	Increase Throughput Time	C	3
A	Increase Cost	C	4
0	Which of the following is independent of	N 4	1
Q	Sales Volume	IVI	1
A	Profit	C	1
A	Industrial Safety	1	. 2
A	Loss	C	3
A	Revenue	C	4
Q	Industrial Engineer plays role in	М	1
A	Reducing Wastes	1	. 1
A	Increasing Wastes	C	2
A	Decreasing Productivity	C	3
A	Compromising Safety Standards	C	4
0	Industrial Engineering technique of critical	N //	1
Q	investigation is	IVI	-
A	Mechatronics	0	1
A	Tribology	0	2
A	Automation	0	3
A	Work Study	1	. 4
Q	Value of a product is ratio of it's	М	1
A	Function to Cost	1	. 1
A	Cost to Function	0	2
A	Quality to Function	C	3
A	Function to Quality	C	4
Q	Value Analysis could be applied to	М	1
A	obsolete product	C	1
A	existing product	1	2

A	new product	0	3
A	declined product	0	4
Q	Value Engineering could be applied to	М	1
A	obsolete product	0	1
A	existing product	0	2
A	new product	1	3
A	matured product	0	4
0	Value proposition of a product could be	N.4	1
Q	improved by	IVI	1
A	increasing it's cost	0	1
A	decreasing it's cost	1	2
A	decreasing it's utility	0	3
A	eliminating it's basic purpose	0	4
0	Value proposition of a product could be	N.4	1
ų	improved by	IVI	1
A	increasing it's utility to cost	1	1
A	decreasing it's utility to cost	0	2
A	increasing it's cost	0	3
A	eliminating it's primary function	0	4
	Reliability of a product with the increase in		
Q	number of functions it serves	М	1
A	improves	0	1
A	deteriorates	1	2
A	has no impact of it's utility	0	3
A	stays constant	0	4
0	Primary Function of 'Paint' on a metallic	М	1
Q.	surface is		-
A	corrosion resistance	1	1
A	identification	0	2
A	aesthetic	0	3
A	glare	0	4

<mark>q</mark>	Cost of a product is influenced the most at	М		1
A	it's design stage		1	1
A	it's manufacturing stage		0	2
A	it's operating stage		0	3
A	it's disposal stage		0	4
	Use Value of a product is associated with			
Q	the	М		1
A	function performed by the product		1	1
A	services absent in the product		0	2
A	functions absent in the product		0	3
A	cost of exchange of the product		0	4
_	Cost Value of a product is cumulative cost			
Q	incurred at the end of	M		1
A	Design Stage		0	1
A	Manufacturing Stage		1	2
A	Ideation Stage		0	3
A	Prototyping Stage		0	4
0	The correct order of procedure in Work	N 4		1
ų	Study is	IVI		T
	Select – Record – Examine – Develop –		1	1
A	Measure – Define – Install – Maintain		1	T
^	Select – Define – Examine – Measure –		0	2
A	Develop – Record – Install – Maintain		U	2
A	Select – Measure – Record – Develop –		0	2
A	Examine – Define – Install – Maintain		U	З
^	Select – Record – Examine – Define –		0	Λ
7	Measure – Develop – Install – Maintain		0	4
	The following factor must be considered			
Q	while selecting the work for method study	М		1
	while selecting the work for method study			
A	Climate Change		0	1
A	Afforestation		0	2

A	Human reactions	1	3
A	Census	0	4
0	In process charts, the symbol used for	N.4	1
ų	storage is	IVI	1
A	Circle	0	1
A	Square	0	2
A	Arrow	0	3
A	Triangle	1	4
<u>_</u>	In process charts, the symbol used for	N.4	1
Q	Transport is	IVI	1
A	Circle	0	1
A	Square	0	2
A	Arrow	1	3
A	Triangle	0	4
0	Delay' event reflects in charting procedure	N.4	1
ų	when	IVI	1
A	operator is on leave	0	1
A	work awaits subsequent event	1	2
A	a public holiday is announced	0	3
A	foreman is on leave	0	4
0	A milk powder tin is being weighed as it is	N.4	1
Q	filled is an example of	IVI	1
A	Operation cum transportation	0	1
A	Operation cum inspection	1	2
A	Transportation cum inspection	0	3
A	Delay and Storage	0	4
0	In outline process chart, the horizontal	N/I	1
Q	lines represent	IVI	1
^	sub-assemblies being introduced to	1	1
7	principal process flow	1	-
A	decision nodes in process	0	2
A	principal process flow	0	3
A	bypassing of standard instructions	0	4

0	Work study technique is divided into two	М	1
~	sub-approaches as		-
A	Method Study and Work Measurement	1	1
A	Budgeting and Provisioning	0	2
A	Administration and House Keeping	0	3
A	Safety and Disposal	0	4
Q	Work study is	М	1
A	a productivity improvement technique	1	1
A	a preventive maintenance philosophy	0	2
A	a quality management philosophy	0	3
A	Reengineering Technique	0	4
	Work study as defined by ILO, is a		
Q	systematic investigation of factors	М	1
	affecting		
A	discipline and security	0	1
A	safety and disposal	0	2
A	efficiency and economy	1	3
A	reliability and quality	0	4
	Method study, as defined by ILO, is a		
Q	systematic recording and critical	Μ	1
	examination of		
A	discipline and security	0	1
A	safety and disposal	0	2
	existing ways of doing work and proposed		
A	ways of doing work	1	3
A	reliability and quality	0	4
Q	Method Study aims at	М	1
A	increasing costs	0	1
A	reducing workforce	0	2
A	minimizing profits	0	3
A	applying more effective methods	1	4
Q	Work Measurement establishes	M	1
A	time	1	1

A	space		0	2
A	matter		0	3
A	method		0	4
0	The correct order of procedure in Method	N/		1
Q	Study is	IVI		1
٨	Select – Record – Examine – Develop –		1	1
A	Define – Install – Maintain		1	1
٨	Select – Define – Examine – Develop –		0	2
~	Record – Install – Maintain			2
٨	Select – Record – Develop – Examine –		0	2
~	Define – Install – Maintain			5
٨	Select – Record – Examine – Define –		0	Л
~	Develop – Install – Maintain			4
	Complete			
<mark>Q</mark>	sequence of	Μ		1
	manufacture can be depicted by			
A	Run Chart		0	1
A	Flow process chart		1	2
A	P Chart		0	3
A	C Chart		0	4
	In a Factory layout,			
<mark>Q</mark>	movement of	Μ		1
	materials can be depicted by			
A	Pie Charts		0	1
A	Travel Chart		1	2
A	Histogram		0	3
A	Pareto Chart		0	4
	In a Factory layout,			
<mark>Q</mark>	movement of	Μ		1
	workers is depicted in			
A	Venn Diagram		0	1
A	String diagram		1	2
A	Iron Carbon Diagram		0	3

A	Scatter Diagram	0	4
Q	Gang work could be studied using	Μ	1
A	Gangway Layout	0	1
A	Cusum Chart	0	2
A	Multiple activity chart	1	3
A	Check Sheets	0	4
<mark>q</mark>	Workplace layout could be studied using	М	1
A	Two-handed process chart	1	1
A	Cusum Chart	0	2
A	Venn Diagram	0	3
A	Run Chart	0	4
Q.	Typesetting by hand could be studied using	М	1
A	Simo Chart	1	1
A	String diagram	0	2
A	Travel Chart	0	3
A	Histogram	0	4
	Short cycle		
Q	repetitive work could be studied using	Μ	1
A	String diagram	0	1
A	Micromotion analysis	1	2
A	Travel Chart	0	3
A	Check Sheets	0	4
Q	'Ergonomics' is related to human	М	1
A	comfort and safety	1	1
A	aesthetics and awe	0	2
A	beauty and appeal	0	3
A	occupation and race	0	4
0	The following subject is related to	N.4	
ų	'Ergonomics'	IVI	1
A	Anthropology	1	1

A	History		0	2
A	Geography		0	3
A	Zoology		0	4
0	In Ergonomics, the qualitative information	N/		1
Q	is one which concerns the	IVI		1
A	value of some variable		0	1
A	rate of change		1	2
A	Condition or status of a system		0	3
^	Presence or absence of some specific		0	Λ
A	object		U	4
0	In Ergonomics, the quantitative	NA		1
Q	information is one which concerns the			1
A	value of some variable		1	1
A	rate of change		0	2
A	Condition or status of a system		0	3
^	Presence or absence of some specific		0	Λ
7	object		Ŭ	-
Q	Ergonomics principle suggests that	Μ		1
Δ	Monitoring displays may ignore peripheral		0	1
~	limitations		Ŭ	-
	Glow-in-the dark dials made of reflective			
A	substances add to costs so should be		0	2
	avoided			
	Visual systems should be preferred over			
A	auditory systems in noisy locations		1	3
A	Auditory senses are more reliable than		0	4
	Visual senses			
Q	The following is basic type of dynamic	М		1
	quantitative display in ergonomics			
A	Fixed scale with moving pointer		1	1
A	Fixed pointer with fixed scale		0	2
A	moving pointer with moving scale		0	3

A	curtailed scale with truncated pointer	0	4
0	In designing an efficient workspace,	N.4	1
ų	operator's hands will cover	IVI	T
A	Maximum working area	1	1
A	Normal working area	0	2
A	Minimal working area	0	3
A	Half of working area	0	4
	For a Bench Workspace, the most		
Q	frequently used components are arranged	М	1
	at		
A	Left Side	0	1
A	Right Side	0	2
A	Central Area	1	3
A	Above the eye level	0	4
	When large number of controls and		
Q	displays are to be arranged, more	М	1
	consideration should be given to		
٨	Secondary controls for Secondary Visual	0	1
~	Tasks	0	1
A	Primary controls for Primary Visual Tasks	1	2
A	Secondary Visual Tasks	0	3
A	Secondary Controls	0	4
	Height of the top of work bench with	-	
a	reference to height of elbow of the	М	1
	workman should be		
A	at the elbow level	1	1
A	substantially above the elbow level	0	2
A	significantly below the elbow level	0	3
A	exactly two inches above elbow level	0	4
0	For controlling the rotation through more	N.4	
ų	than 360 degree, we use	IVI	1
A	Knob	0	1

A	Selector	0	2
A	Crank	1	3
A	Wheel	0	4
	For natural light as principal means of		
Q	illumination at workspace, ratio of window	М	1
	area to floor area needs to be		
A	20%	0	1
A	30%	1	2
A	40%	0	3
A	50%	0	4
0	Illumination of work area compared to	N/I	1
Q	surroundings should be		1
A	more	1	1
A	less	0	2
A	equal	0	3
A	matching	0	4
	The safe exposure limits for noise levels for		
Q	08 hours of working/day in dB is	Μ	1
A	90	1	1
A	110	0	2
A	130	0	3
A	150	0	4
	The following are the principles in the		
Q	application of Anthropometric data except	M	1
A	Design for extreme individuals	0	1
A	Design for the average	0	2
A	Design for adjustable range	0	3
A	Design for the optimum	1	4
Q	ine international limits for chemical	М	1
	substances in air is known as		
•		^	

A	Minimum Limit	0	2
A	Optimum Limit	0	3
A	Threshold Limit	1	4
	The correct sequence of development of		
Q	Anthropometric considerations in design	М	1
A	step by step, is Decide the user population – Decide the relevant body measurement – Determine the applicable principle – Decide the percentage of population	1	1
A	Decide the relevant body measurement – Decide the user population –Determine the applicable principle – Decide the percentage of population	0	2
A	Decide the user population – Decide the relevant body measurement – Decide the percentage of population – Determine the applicable principle	0	3
A	Decide the user population – Determine the applicable principle – Decide the relevant body measurement – Decide the percentage of population	0	4
Q	Process layout is more suitable for	М	1
A	job production	0	1
A	batch production	1	2
A	mass production	0	3
A	project site	0	4
Q	Fixed layout is more suitable for	М	1
A	on site projects	1	1
A	job production	0	2
A	batch production	0	3

A	mass production	0	4
Q	Product layout usually deploys	М	1
A	general purpose machines	0	1
A	special purpose machines	1	2
A	cheaper locally sources machines	0	3
A	indigenous technology	0	4
Q	Process layout usually deploys	М	1
A	general purpose machines	1	1
A	special purpose machines	0	2
A	costlier imported machines	0	3
A	no indigenous technology	0	4
Q	Product layout assures	М	1
A	quantity of production	1	1
A	variety in production	0	2
A	more flexibility in production	0	3
A	many products being processed at a time	0	4
Q	Process Layout assures	М	1
A	quantity of production	0	1
A	variety in production	1	2
A	less flexibility in production	0	3
A	single product being processed at a time	0	4
Q	Disadvantage of product layout is	М	1
A	high initial investment for a specialized facility	1	1
A	high work in process inventory	0	2
A	higher throughput times	0	3
A	high flexibility in manufacturing	0	4
0	Function specific arrangement of resources	N/I	1
ų	is implemented in	IVI	I
A	Fixed Layout	0	1
A	Process Layout	1	2

A	Product Layout	0	3
A	Project Layout	0	4
0	Product specific arrangement of resources	N 4	1
Q	is implemented in	IVI	1
A	Fixed Layout	0	1
A	Process Layout	0	2
A	Product Layout	1	3
A	Project Layout	0	4
0	Number of fixed sets of machines required	N 4	1
Q	is relatively highest in	IVI	1
A	Product Layout	1	1
A	Process Layout	0	2
A	Fixed Layout	0	3
A	Project Layout	0	4
0	Number of fixed sets of machines required	N /	1
Q	is relatively lowest in	IVI	1
A	Product Layout	0	1
A	Process Layout	1	2
A	Fixed Layout	0	3
A	Project Layout	0	4
0	Initial Fixed Cost investment required is	N/I	1
Q	relatively highest in	IVI	1
A	Product Layout	1	1
A	Process Layout	0	2
A	Fixed Layout	0	3
A	Project Layout	0	4
0	Initial Fixed Cost investment required is	NA	1
Q	relatively lowest in	IVI	1
A	Product Layout	0	1
A	Process Layout	1	2
A	Fixed Layout	0	3
A	Project Layout	0	4

0	Extent of material handling is relatively	М	1
ч 	more in		-
A	Product Layout	0	1
A	Process Layout	1	2
A	Fixed Layout	0	3
A	Project Layout	0	4
0	Extent of material handling is relatively less	М	1
ų –	in		-
A	Product Layout	1	1
A	Process Layout	0	2
A	Fixed Layout	0	3
A	Project Layout	0	4
0	Production facility is relatively more	M	1
u a	versatile in		1
A	Product Layout	0	1
A	Process Layout	1	2
A	Fixed Layout	0	3
A	Project Layout	0	4
0	Production facility is relatively less versatile	N/I	1
u a	in		1
A	Product Layout	1	1
A	Process Layout	0	2
A	Fixed Layout	0	3
A	Project Layout	0	4
Q	Drivers of Agile environments	Μ	1
A	retarded technological developments	0	1
A	niche markets	1	2
A	dragged product life cycles	0	3
A	stable and loyal customer base	0	4
0	Agile approach demands enterprises to	М	1
Q	collaborate outside with	IVI	
A	departments	0	1
A	functions	0	2

A	competitors	1	3
A	employees	0	4
Q	Agile manufacturing deals in	М	1
A	high quantity mass production	0	1
A	medium lot size production	0	2
A	arbitrary quantity production	1	3
A	one off unit quantity production	0	4
Q	Agile manufacturing advocates	М	1
A	mass Production	0	1
A	mass customization	1	2
A	mass communication	0	3
A	mass publicity	0	4
Q	Agile approach involves	М	1
٨	centralized manufacturing facility near to	0	1
A	raw materials	U	1
٨	decentralized manufacturing clusters near	1	2
~	to markets	1	2
A	manufacturing facility away from market	0	3
•	manufacturing clusters around raw	0	
A	material sites	0	4
Q	Agile approach works best with	М	1
A	Line Layout	0	1
A	Fixed Layout	0	2
A	Flexible Layout	1	3
A	Project Layout	0	4
Q	An agile supply chain takes care of	М	1
A	a high level of demand uncertainty.	0	1
٨	a high level of both demand and supply	1	
~	uncertainty.	I	2
A	a high level of supply uncertainty.	0	3
A	either demand or supply uncertainty.	0	4

	Products in the fashion goods industry and		
Q	the high-technology industry suffer from	М	1
	forecast inaccuracy due to		
A	a high level of demand certainty.	0	1
A	a wide range of product variety.	1	2
A	an extended life-cycle of the products.	0	3
A	a high level of supply certainty.	0	4
2	Firms engaged in outsourced		
Q	manufacturing have to be concerned with	IVI	1
A	disruptions in demand.	0	1
A	disruptions at facilities.	0	2
	disruptions in transportation and freight		
A	breaches.	1	3
A	disruptions in supply.	0	4
	Fully automated Group Technology		
Q	enabled manufacturing cell with a	М	1
	dedicated material handling is		
A	Flexible Manufacturing System	1	1
A	Automated Manufacturing	0	2
A	Group Manufacturing	0	3
A	Mechanized Production Unit	0	4
0	Which is the component of Flexible	N 4	1
Q	manufacturing system(FMS)	IVI	T
A	Wheel Barrow	0	1
A	Automated guided vehicle	1	2
A	Fork Lift	0	3
A	Chute	0	4
0	From the following what is the full form of	N/I	1
ų	AGV?	171	1
A	Armed Guided Vehicle	0	1
A	Automated Gas Vehicle	0	2
A	Automated Guided Vehicle	1	3

A	Alarmed Guided Vehicle	0	4
0	From the following which is the type of	N.4	1
ų	Automated Guided Vehicle (AGV).		1
A	Driver less Material Handling System	1	1
A	Operator Driven Goods Cart	0	2
A	Pendant Operated Goods Trolley	0	3
A	Walkthrough Controlled Goods Train	0	4
0	From the following which method is used	N.4	1
ų	to guide the AGV.		1
A	drag force for push or pull	0	1
A	rolling motion utilizing floor slope	0	2
A	wired or wireless sensor based self guiding	1	3
A	operator driven motorised vehicle	0	4
0	From the following which is not the	N.4	1
Q	application of AGV.		1
A	Truck loading and unloading	0	1
A	To change the tool	1	2
A	Material transfer	0	3
A	Paper roll transfer	0	4
0	From the following which is the benefit of	N.4	1
Q	AGV.		1
A	increases man-hour rates	0	1
Δ	reduces human exposure in hazardous	1	2
	environment	-	2
A	increases labour cost	0	3
A	increases power consumption	0	4
	A combination of equipment and controls		
	which handles, stores and retrieves		
Q	materials with precision, accuracy and	М	1
	speed under a defined degree of		
	automation is known as		

A	Automated storage and retrieval system (AS/RS)	1	1	
А	Automated guided vehicle	0	2	
А	Flexible Manufacturing System	0	3	
A	Fork Lift	0	4	
Q	From the following which is the main	М	1	
٨	warehouse	0	1	
A	warehouse	0	1	
A	Storage and retrieval equipment	1	2	
A	snop floor	0	3	
A	rack	0	4	
Q	From the following which is the benefit of AS/RS system	М	1	
A	Consistency in Material Handling	1	1	
A	poor housekeeping	0	2	
A	Increased labour cost	0	3	
A	damage to surface of product	0	4	
~	From the following which is the type of			
Q	FMS layout.	M	1	
A	process layout	0	1	
A	Ladder Layout	1	2	
A	Product Layout	0	3	
A	Project Layout	0	4	
Q	What is the full form of AS/RS in FMS?	М	1	
А	Automated storage and recovery system	0	1	
A	Automatic storage and rotary system	0	2	
A	Automated storage and retrieval system	1	3	
A	Automated storage and regenerative system	0	4	
Q	Agile manufacturing is more suitable for	М	1	

А	unpredictable and probabilistic manufacturing environments	1	1
A	deterministic manufacturing environment	0	2
А	anticipated customer behaviour environments	0	3
A	confirmed order manufacturing environments	0	4
Q	Agile Enterprise assures	М	1
A	retarded response time to market	0	1
A	zero product customization	0	2
A	extended product development cycles	0	3
A	shortest possible response times to market	1	4