Q=QUESTION	question_description	question_explanation	question_type	question_difficulty
A=ANSWER	answer_description	answer_explanation	answer_isright	answer_position
	Main application of FACTS is to			
Q	compensate			1
A	Reactance		1	1
А	Resistance		0	2
A	conductance		0	3
A	admittance.		0	4
	During series resonance, the impedance			
Q	of the circuit is		S	1
A	Minimum		1	1
А	Maximum		0	2
А	Zero		0	3
А	Moderate		0	4
	Distance after which cost of HVDCT			
	<< cost of HVACT is termed as			
Q	distance.		S	1
Ā	Broad		0	1
А	Critical point		0	2
А	Break-even		1	3
A	Change over		0	4
	In the case of the welding plant, the			
	permitted voltage variation is			
	related to the sensitivity of the			
	human eye to light fluctuations as a			
Q	function of frequency.		M	1
A	directly		0	1
A	inversely		1	2
A	not		0	3
A	linearly		0	4
	Power factor can be improved by			
Q	connecting which among these?		Μ	1

A	Static capacitors.	0	1
A	Resistors.	0	2
A	Synchronous condensers.	0	3
	Static capacitors and Synchronous		
A	condensers.	1	4
	The most suitable location for the power		
Q	factor improvement device is	М	
A	Near the electrical appliance	0	
A	At the sending end	0	
	At the receiving end in case of transmission		
A	lines.	0	
	Near the electrical appliance and at the		
A	receivind end of the transmission line	1	
	The intrinsic sensitivity of the supply		
	voltage to variations in the reactive power		
Q	Q is given as	М	
A	S _{SC}	1	
A	S _{sc}	0	
A	<u>E</u> S _{SC}	0	
A	S _{sc}	0	
	Typical variations in the reactive power		
	requirements of a steel rolling mill is found		
<mark>Q</mark>	to be	М	
A	small	0	
A	large and sudden	1	
A	gradual	0	
A	smooth	0	
	In TSC, which of the following is not		
Q	applicable to capacitors switching?	М	
	switching at instant where capacitor voltage		
A	and AC voltage are in sync.	0	
A	transient-free switching	0	
A	firing delay angle control	1	

	switching when thyristor valve voltage is		
A	minimum.	0	
	The aim of switching converter type static		
	VAR generators is to produce a		
	that can be		
	adjusted to meet the compensation		
Q	requirements.	М	
A	variable capacitor shunt impedance	0	
A	fixed capacitor shunt impedance	0	
A	variable reactive shunt impedance	1	
A	fixed reactive shunt impedance	0	
	With respect to reactive newer concretion		
	with respect to reactive power generation,		
	compensator operation is similar to		
	whose feactive power output		
Q	is varied by excitation control.	М	
A	a DC generator	0	
A	a transformer	0	
A	an ideal high pass filter	0	
A	an ideal synchronous machine	1	
	In TCR along with currents harmonics are		
	also generated resulting in		
	waveforms, specifically		
Q	waveronnis, specificany.	М	
A	sinusoidal	0	
A	non-sinusoidal	1	
A	exponential	0	
A	saw-tooth	0	
	Which of the following is not a unique		
Q	property of STATCOM?	М	
A	has symmetric lead-lag capability	0	
A	cannot produce resonance with the system	0	

Δ	more useful under large voltage	0	
A	very slow response	1	
0	Assume a 275 kV transmission line having the following line constants: $A = 0.5 \ 5^{\circ}$; B = 200 75° If a load is connected at receiving end at unity power factor but maintaining the same voltage profile. Then compensation will be needed at	М	1
A	capacitive, receiving end	1	1
A	inductive, sending end	0	2
A	capacitive, sending end	0	3
A	inductive, receiving end	0	4
Q	UPFC falls under which generation of FACTS controller?	M	1
A	second	0	2
A	third	1	3
A	fourth	0	4
0	UPFC is a form of -	M	1
A	Series FACTS controllers	0	1
A	Shunt FACTS controllers	0	2
A	Combined series series FACTS controllers	0	3
A	Combined series shunt FACTS controllers	1	4
Q	what is bang bang control?	Μ	1
A	a discrete control form in which the thyristor is either fully switched on (α =90) or fully switched off (α =180)	1	1
A	a discrete control form in which the thyristor is fully switched on (α =90)	0	2

	a discrete control form in which the		
A	thyristor is fully switched off (α =180)	0	3
	a discrete control form in which the		
	thyristor is either fully switched on (α =180)		
A	or fully switched off (α =90)	0	4
Q	Application of UPFC would include -	М	1
A	power flow control only	0	1
A	power oscillation damping only	0	2
A	fault current limiting only	0	3
	can do all three; power flow control, power		
	oscillation damping and fault current		
A	limiting	1	4
	Which of the following is not a salient		
Q	feature of UPFC?	М	1
A	more reliable	0	1
A	provides dynamic security	0	2
A	acts as harmonic isolator	0	3
	is capable of increasing conductor cross		
A	section for improved current flow	1	4
	The voltage ratings of thyristors present in		
	PAR gives which type of volatages during		
Q	surges	М	
A	transient	1	
A	steady state	0	
A	both transient and steady state	0	
A	neither transient nor steady state	0	
	The syncronous voltage source used as		
	voltage or angle regulator will exchage		
Q	which type of power	М	
A	reactive Power	0	
A	real power	0	
A	both real and reactive	1	
A	interactive	0	

	In PARwhich type of magnitude control			
	can be applied at the time of thyristor valve			
Q	conduction		М	
A	current		0	
A	emf		0	
A	voltage		1	
A	power		0	
Q	The gating of thyrister controlled valve can	be done by	М	
A	forward control		0	
A	delay control		1	
A	fast forward control		0	
A	cascade control		0	
Q	PAR does not increase		М	
A	power		1	
A	voltage		0	
A	current		0	
A	emf		0	
Q	For large oscillaton which type of conrol mo	st effective		
A	overdamped		0	
A	underdamped		0	
A	damped		0	
A	bang bang		1	
	The equal area criteria is usedto invest			
Q	capability of which compensator		М	
A	shunt		0	
A	series		0	
A	shunt and series		1	
A	tssc		0	
Q	From which source actully PARs oprates		М	
A	fixed current		0	
A	fixed voltage		1	
A	fixed power		0	
A	fixed emf		0	

	what is relationship between real power		
Q	and reactive power in PAR	М	
A	they are same	1	
A	they vary	0	
A	they are disfferent	0	
A	cannot say	0	
Q	FACTS devices generally deals with	М	
A	S	0	
A	Q	1	
A	Р	0	
A	Load Angle	0	
Q	Application of the facts device is	М	
A	Generation	0	
A	AC transmission	1	
A	DC transmission	0	
A	Load	0	
	Transmission Interconnections is		
Q	applicable in	М	
	to minimize the total power generation		
A	capacity and fuel cost	1	
A	to minimize reactive power	0	
A	to improve power factor	0	
A	to maintain flat voltage profle	0	
Q	If generation is less than load	М	
A	the voltage and frequency drop,	1	
A	the voltage drop	0	
A	the frequency drop	0	
A	the power factor improves.	0	
	Control of the line impedance X can		
Q	provide a powerful means of	М	
A	current control	1	
A	voltage control	0	
A	frequency control	0	

A	power factol control		0	
	all series Controllers inject in			
Q	series with the line.		М	
A	current		0	
A	voltage		1	
A	voltage and current		0	
A	power		0	
	all shunt Controllers inject into			
Q	the system at the point of connection.		М	
A	current		1	
A	voltage		0	
A	voltage and current		0	
A	power		0	
Q	A STATCOM is a		М	
A	Series Controller		0	
A	Shunt Controller		1	
A	combined series- series controller		0	
A	Combined Series-Shunt Controller		0	
Q	What does GCSC means?		М	
A	GTO Controlled Switch Capacitor		0	
A	GTO Controlled Series Capacitor		1	
A	GTO Controlled Switch Compensator		0	
A	GTO Controlled Series Compensator		0	
Q	GCSC consists of		М	
A	Variable capacitor in parallel with a GT	O thyristor	0	
A	fixed capacitor in Series with a GTO th	yristor	0	
A	fixed capacitor in parallel with a GTO th	n <mark>yristor</mark>	1	
A	Variable capacitor in Series with a GTO	thyristor	0	
Q	Limitations of series compensation		М	
A	Reduce the stability		0	
A	increase the voltage drop		0	
A	Reduce the power factor		1	
A	Increase in fault current		0	

Q	Operation of SSSC resemble to	М	
A	shunt capacitor	0	
A	series inductor	0	
A	shunt capacitor and series inductor	1	
A	shunt inductor and series capacitor	0	
Q	Main Objective of GCSC is	М	
	to control the ac current across the		
A	capacitor for a given line current	0	
	to control the ac voltage across the		
A	capacitor for a given line current	1	
	to control the ac voltage across the		
A	capacitor for a given line voltage	0	
	to control the ac current across the		
A	capacitor for a given line voltage	0	
Q	TCSC can provide continuously	М	
A	Fixed capacitance	0	
A	variable capacitance	1	
A	Fixed inductance	0	
A	Variable inductance	0	
Q	TCSC is capable of providing	М	
A	Constant supply	0	
A	Constant alternating supply	1	
A	constant current	0	
A	constant voltage	0	
	Power angle regulator is applied when		
Q	power between is transmitted in	М	
A	Parallel lines of same electrical length	0	
	Parallel lines of different electrical		
A	length	1	
A	Any parallel lines	0	
A	Parallel lines of same polarity	0	
Q	In TSSC, when the current crosses zero,	 Μ	
A	the thyristor valve is turned on	0	

		1	
A	the thyristor valve is turned off	1	
A	the capacitor is turned on	0	
A	the capacitor valve is turned off	0	
	The degree of serirs compensation in		
	TSSC is controlled step wise by		
Q	increasing or decreasing the no of	М	
A	Series capacitor	1	
A	Parallel capacitor	0	
A	Series of inductor	0	
A	Series of inductor	0	
	If the opening of GCSC is delayed by		
	angle gamma wrt the crest of line		
Q	current i, then $Vc = ?$	М	
A	(I/wC)×(sinwt - sin gamma)	1	
A	(wC/I)×(sinwt - sin gamma)	0	
A	(I/wC)×(sin gamma - sinwt)	0	
A	(wc/I)×(sin gamma - sinwt)	0	
	When the GTO valve is closed, voltage		
Q	accross the capacitor is	М	
A	maximum	0	
A	minimum	0	
A	zero	1	
A	infinity	0	
Q	In TSSC, the 1st half of the cycle	М	
	charges the capacitor from zero to		
A	maximum	0	
	discharges the capacitor from maximum		
A	to zero	1	
A	charges the capacitor to minimum	0	
A	discharges the capacitor to minimum	0	
	A capacitor is inserted by which		
Q	technique in TCSC	М	
A	Switching ON the Thyristor	0	

A	By manually adding		0	
A	Switching OFF the Thyristor		1	
A	By removing the Thyristor		0	
	In TSSC when does the thyristor valve			
	commutates "naturally," that is, it turns			
Q	off?		М	
A	When Current crosses 90°		0	
A	When Current crosses 180°		0	
A	When Current crosses 0°		1	
A	When Current crosses 45°		0	
	In normal operation TCSC operates at			
Q	which mode		М	
A	Bypassed- thyristor mode		0	
A	Blocked - thyristor mode		0	
A	Capacitive Vernier mode		1	
A	Inductive Vernier mode.		0	
Q	What does TCSC means		М	
A	Transistor controlled series capacitor		0	
A	Thyristor controlled series capacitor		1	
	Transistor controlled switched capacitor			
A			0	
	Thyristor controlled switched capacitor			
A			0	
Q	A static VAR compensator is a		М	
A	Voltage controlled shunt compensation of	levice	1	
A	Current controlled shunt compensation of	levice	0	
A	Voltage controlled series compensation	device	0	
A	Current controlled series compensation of	levice	0	
	What is the result of frequency			
Q	instability?		М	
A	Voltage collapse		0	
A	Frequency swings		1	
A	Grid failure		0	

A	nothing happens		0	
	The transient stability limit of a power			
	system can be appreciably increased by			
Q	introducing		М	
A	Series inductance		0	
A	Shunt inductance		0	
A	Series capacitance		1	
A	Shunt capacitance		0	
	Which equipment is used for EHV lines			
Q	to improve power transferability?		М	
A	Shunt capacitor		0	
A	Shunt reactor		0	
A	Series capacitor		1	
A	Series reactor		0	
Q	FACTS will increase		М	
A	System transient stability		1	
A	Reduce fault currents		0	
A	Improves unstability		0	
A	Voltage collapse		0	
Q	FACTS devices used in		М	
А	Generation		0	
A	AC transmission		1	
A	DC transmission		0	
A	Distribution		0	
Q	Which of the following equipment is not	used for voltage control	М	
A	Tap changing transformer		0	
A	Induction generators		1	
A	Series compensators		0	
A	Synchronous phase modifiers		0	
Q	How is the voltage and frequency control	lled in automatic genera	Μ	
A	By controlling the excitation		0	
A	By controlling the turbine action		0	
A	Turbine speed control for voltage and ex	citation control for frequ	1	

A	Excitation control for voltage and turbin	e speed control for volta	0	
Q	What is voltage stability?		М	
A	To maintain steady voltages at all the bu	ses after the occurrence	1	
A	To maintain steady voltages at all the bu	ses before the occurrence	0	
A	To maintain the system frequency after t	he severe disturbances	0	
A	During distrubunance		0	
Q	With 100 % inductive shunt compensation	on, the voltage profile is	М	
A	100% loading line		0	
A	50% loading line		0	
A	Zero loading of line		1	
A	45% loading line		0	
Q	A series compensated transmission line l	nas better	М	
A	Reactive capacity		0	
A	Short circuit capacity		0	
A	Steady circuit capacity		0	
A	Transient stability		1	
Q	If a line is 100 % series compensated it r	nay result in series reson	М	
A	50 or 60 Hz		1	
A	100 Hz		0	
A	25 Hz		0	
A	150 Hz		0	
Q	For certain geometry and operating volt	age of the uncompensate	М	
A	Increases		0	
A	Remains unchanged		1	
A	Decreases		0	
A	Uncertain		0	
Q	TSC means		М	
A	Thyristor controlled reactor		0	
A	Thyristor switched capacitor		1	
A	Thyristor switched reactance		0	
A	Fixed capacitor-thyristor controlled reac	tor	0	
Q	FC-TCR means		Μ	
A	Thyristor controlled reactor		0	

A	Thyristor switched capacitor		0	
A	Thyristor switched reactance		0	
A	Fixed capacitor-thyristor controlled reac	tor	1	
Q	FACTS devices are generally used for to	compensate	М	
A	Reactance		1	
A	Resistance		0	
A	Conductance		0	
A	Inductance		0	
Q	AGC controls		М	
A	Frequency		1	
A	torque		0	
A	Steam /water input		0	
A	Voltage		0	
Q	STATCOM + SSSC will make		М	
A	UPQC		0	
A	TCSC		0	
A	UPFC		1	
A	SVR		0	
Q	Saturated reactor will generate harmonic	s of the order of	М	
A	$16k \pm 1$		0	
A	9k ± 1		1	
A	$18k \pm 1$		0	
A	$20k \pm 1$		0	
Q	Losses in FC-TCR will vary in the range	of	М	
A	0.5 - 0.9%		1	
A	0.8 - 0.15%		0	
A	0.5 - 0.12%		0	
A	0.5 - 0.7%		0	
Q	IGBT is used in HVDC transmission bec	cause of	М	
A	Fast switching capacity		0	
A	Can withstand high voltage		1	
A	Can tolerate mechanical shock		0	
A	Can withstand high current shock		0	

Q	Main problem of HVDC line at receiving	g end is of	М	
A	P balance		1	
A	Q balance		0	
A	Voltage balance		0	
A	S balance		0	
Q	Full form of EAG in HVDC converter is		М	
A	Extinction angle control		1	
A	Extinction angular control		0	
A	Excitation angle control		0	
A	Excitation angular control		0	
	FACTS devices are generally used for			
	to compensate Of the transmission			
Q	line		М	
A	Reactance		1	
A	Resistance		0	
A	conductance		0	
A	admittance.		0	
Q	FACTS devices used in		М	
A	Generation		0	
A	AC transmission		1	
A	DC transmission		0	
A	Load		0	
	Why We Need Transmission			
<mark>Q</mark>	Interconnections		М	
	to minimize the total power generation			
A	capacity and fuel cost		1	
A	to minimize reactive power		0	
A	to improve power factor		0	
A	to maintain flat voltage profle		0	
	Control of the line impedance X can			
Q	provide a powerful means of		Μ	
A	current control		1	
A	voltage control		0	

A	frequency control	0	
A	power factol control	0	
	all series Controllers inject in		
Q	series with the line.	М	
A	current	0	
A	voltage	1	
A	voltage and current	0	
A	power	0	
Q	A STATCOM is a	М	
A	Series Controller	0	
A	Shunt Controller	1	
A	combined series- series controller	0	
A	Combined Series-Shunt Controller	0	
	Which one is Series Connected		
Q	Controller	М	
A	TSSR	1	
A	TSC	0	
A	TSR	0	
A	UPFC	0	
	Which one is Series Connected		
Q	Controller	М	
A	TCBR	0	
A	TCSR	1	
A	SVG	0	
A	TSC	0	
	Which one is Shunt Connected		
Q	Controller	М	
A	TCSR	0	
A	TSSC	0	
A	TSSR	0	
A	TSC	1	
	which one is Combined shunt and		
Q	series connected controller	М	

A	UPFC	1	
A	TSSC	0	
A	TCSR	0	
A	TSSR	0	
Q	series Controller injects:	М	
A	Voltage in phase with the line current.	0	
	current in phase quadrature with line		
A	voltage	0	
	Voltage in phase quadrature with line		
A	current.	1	
A	current in phase with line voltage	0	
Q	A shunt controller injects:	М	
	current in phase quadrature with line		
A	voltage	1	
A	voltage in phase with line voltage	0	
	voltage in phase quadrature with line		
A	voltage	0	
A	current in phase with line voltage	0	
	How is STATCOM connected in a		
Q	system	М	
	Series to the system which requires		
A	compensation	0	
	Series or parallel to the system which		
A	requires compensation	 0	
	Shunt to the system which requires		
A	compensation	 1	
A	As per the sysytem kVAr requirement	0	
Q	What does SSG stands for	М	
A	Series Source Generatror	0	
A	Shunt Source Generator	0	
A	Series Static Generator	0	
A	Static Synchronous Generator.	1	
Q	What does SSSC stands for	Μ	

	Series Static Superconducting		
A	Compensator	0	
	Shunt Static Superconducting		
A	Compensator	0	
	Static Synchronous Series		
A	Compensator	1	
	Static Synchronous Shunt Compensator		
A		0	
	What does SMES stands in		
Q	compensation techniques:	М	
A	Series Magnetic Energy Storage	0	
A	Shunt Magnetic Energy Storage	0	
	Superconductor Magnetic Energy		
A	Storage	1	
A	Super Magnetic Energy Storage	0	
Q	How is SSSC connected in system	М	
	Series to the system which requires		
A	compensation	0	
	Shunt to the system which requires		
A	compensation	1	
	Series or parallel to the system which		
A	requires compensation	0	
	According to the compensation		
A	magnitude.	0	
Q	FACTS controller used For ?	М	
A	Voltage compensations	0	
A	KVARcompensation	1	
A	KW compensation	0	
A	PF control	0	
Q	SVC term defined as	Μ	
A	Synchronous Voltage Converter	0	
A	Shunt Voltage Compensator	0	
A	Static VAR Compensator	1	

A	Synchronous Voltage Converter	0	
	SVC and STATCOM are		
Q	device.	М	
A	Voltage compensators	0	
	Static series synchronous compensator		
A		0	
A	Shunt Compensators	0	
A	Seies Compensators	1	
Q	UPFC stands for:	М	
A	Unified Power Factor Controller	0	
A	Unified Power Flow Compensator	0	
A	Unified Power Flow Controller	1	
A	Unique Power Controller	0	
	Power flow control, Voltage control		
	and oscillation damping is the main		
Q	feature of:	М	
A	TSC	0	
A	SSSC	0	
A	UPQC	0	
A	UPFC	1	
Q	UPFC Consists of	М	
A	one voltage sourced converter	0	
A	Two voltage sourced converter	1	
A	Three voltage sourced converter	0	
A	Four voltage sourced converter	0	
	The function of converter 1 of UPFC is		
	to supply or absorb thedemanded by		
	converter 2 at the dc link.		
Q		М	
A	Real Power	1	
A	reactive power	0	
A	Apperant power	0	
A	inductance	0	

	UPFC control the magnitude and		
Q	angular position of the	М	
A	Injected current	0	
A	Injected voltage	1	
A	Injected Reactive power	0	
A	injected Active Power	0	
A	Real Power flow	0	
A	Reactive Power flow	0	
A	Real and Reactive Power flow	1	
A	Real or Reactive Power flow	0	
A	Active power control	0	
A	Reactive power Control	0	
A	Active and reactive power control	1	
A	Angle Control	0	
A	Proportional to transmission voltage	0	
	Proportional to the square of		
A	transmission voltage	1	
	Inversely proportional to the		
A	transmission voltage	0	
	Inversely proportional to the square of		
A	transmission voltage	0	
A	Excitation control	0	
A	Using induction regulator	0	
A	Reactive VAR injection methods	1	
A	any of the above	0	
A	At the sending end	0	
A	At the receiving end	0	
A	At the intermediate point	1	

А	Anywhere in the line	0	
А	Sudden load changes	0	
А	Switching operations	0	
	Inadvertent tripping of the lines and		
А	generators	0	
А	All of them	1	
	A. Use of series capacitors of		
А	neutralise the effect of series reactance	0	
	B. Switching in shunt capacitors at		
А	the receiving end during heavy loads	0	
А	C. Use of tap changing transformers	0	
А	D. Any of the methods stated	1	
А	Continuous signal	0	
А	Large isolating pulse transformer	0	
А	A train of pulses	1	
А	By sngle pulse	0	
А	2^{nd}	1	
А	3 rd	0	
А	5 th	0	
А	7 ^{<i>t</i> h}	0	
А	0°	0	
А	45°	0	
А	60°	0	
А	90°	1	
A	Remains same	0	
A	Increases	1	

A	Decreases		0	
A	Becomes zero		0	
A	steady state stability		0	
A	Transient stability		1	
A	thermal stability		0	
A	dielectric stability		0	
A	regulate current against load variation		0	
A	regulate load variation		0	
A	regulate voltage against load variation		1	
A	regulate real power flow		0	
A	a perpendicular voltage vector in series	with a phase.	1	
A	a in-phase voltage vector in series with	n a phase	0	
A	a perpendicular voltage vector in shunt	with a phase	0	
A	a in-phase voltage vector in shunt with	a phase	0	
A	STATCOM		0	
A	SSSC		0	
A	UPFC		0	
A	TCR		1	
A	Reduce power factor		0	
A	Improve voltage regulation		1	
A	Unbalance the load		0	
A	Manage the flow of active power		0	
A	Generating reactive power as close as possil	ble to the load	1	
A	Generating active power as close as possible	to the load	0	
A	Generating reactive power as far as possible	to the load	0	
A	Generating active power as far as possible to	o the load	0	

A	Reduced neutral current	0	
A	Reduced losses	0	
A	Reduced ripples in rectifiers	0	
A	Saturation of transformers	1	
A	Correct power factor to zero	0	
A	Correct power factor to unity	1	
A	Increase voltage regulation	0	
A	Unbalances the load	0	
A	Point of Common Coupling	1	
A	Neutral point	0	
A	Generating station side	0	
A	Load side	0	
А	Zero	0	
А	Infinite	1	
А	Negative	0	
А	Very small	0	
А	Tap changing transformer	0	
А	Synchronous Motors	0	
А	Induction Motors	0	
А	Capacitor bank	1	
A	Reactance of line	0	
A	Reactance of generator	0	
A	Output Torque	0	
A	Losses	1	
A	P <po< td=""><td>1</td><td></td></po<>	1	
Α	P>Po	0	
Α	P=Po	0	
Α	Independent on P and Po	0	

A	Sending end voltage is more		1	
A	Receiving end voltage is more		0	
A	Reactance is high		0	
A	Corona losses are least		0	
А	Maximum voltage to minimum voltage		1	
А	Maximum current to minimum voltage		0	
А	Peak voltage to rms voltage		0	
А	Maximum reactance to minimum reactance		0	
А	Negative		1	
А	Zero		0	
А	Positive		0	
А	Unity		0	
А	Short circuit current of system is increased		1	
А	Load power factor in heavy loads		0	
А	Large conductor area is required for same tra	ansmission	0	
А	Small conductor area is required for same tra	ansmission	0	
А	Short transmission lines		1	
А	Medium transmission lines		0	
А	Long transmission lines		0	
А	Medium as well as long transmission lines		0	
А	At the sending end		0	
А	At the receiving end		0	
Α	At the intermediate point		1	
Α	Any where in the line		0	
Α	Series capacitors		0	
A	Shunt reactors		0	
Α	Exciters		1	

A Voltage transformers		0	
------------------------	--	---	--