Q=QUESTION A=ANSWER	question_description answer_description	question_explanation answer_explanation	question_type answer_isright	question_difficulty answer_position
	lon exchange chromatography is based on		_ 3	
Q			М	1
A	Electrical mobility of charged particles		0	1
A	electrostatic force of attraction		1	2
A	hydrphobic interactions		0	2 3
A	hydrophilic interaction		0	4
	Ion-exchange chromatography is used for			
Q	the separation of		М	1
A	polar molecules		1	
A	non-polar molecules		0	
A	hydrphobic molecules		0	3
A	solid molecules		0	4
	The choice of the ion exchanger depends			
Q	upon		M	1
A	the unstability of the test analytes		0	1
	the relative molecular mass of the test			
A	analytes		1	2
	the specific requirements of the			
A	Coagulation		0	3
A	the specific requirements of the mixing		0	4
	If gradient elution is to be used, the initial			
	conditions chosen are such that the			
	exchanger binds all the test analytes			
Q			М	1
Α	throughout the column		0	1
Α	at the top of the column		1	
A	at the bottom of the column		0	
A	at the periphery of the column		0	4

	tend to give better		
	resolution with less peak tailing in ion		
Q	exchange chromatography	M	1
A	Continuous gradient elution	1	1
A	Isocratic elution	0	2
A	Both isocratic and gradient elution	0	3
A	neither isocratic nor gradient elution	0	4
	Matrices used for ion exchange		
Q	chromatography include	M	1
A	polypropelene	0	1
A	sulphate	0	2
A	agarose	1	3
A	sucrose	0	4
	The degree of cross-linking of an		
	exchangerinfluences its		
Q	capacity	M	1
A	does	1	1
A	does not	0	2
A	barely	0	3
A	sometimes	0	4
Q	Physisorption is	M	1
A	Exothermic and irreversible	0	1
A	Exothermic and reversible	1	2
A	Endothermic and irreversible	0	3
A	Endothermic and reversible	0	4
	is commonly used to remove H2S		
Q	from synthetic gas	M	1
A	ZnCl2	0	1
A	ZnO	1	2
A	ZnBr2	0	3
A	ZnSO4	0	4
	The anionic exchangers include		
Q		M	1

A	Diethyaminoethyl	0	1
A	Triethyl aminomethyl	0	2
A	Quarternary aminomethyl	0	3
A	Carboxymethyl	1	4
	What is the use of cross flow in plate and		
Q	frame module?	M	1
A	Reduces fouling	1	1
A	Reduces loss	0	2
A	Reduces efficiency	0	3
A	Increases efficiency	0	4
	Removal of bacteria from cellular broths		
	and fat removal process in the dairy		
Q	industry falls in the category of	M	1
A	Microfiltration	1	1
A	Ultrafiltration	0	2
A	Nano-filtration	0	3
A	Reverse osmosis	0	4
	The flow rate through the membrane filter		
	itself expressed as gallon per square foot		
Q	per day is:	M	1
A	Permeate	0	1
A	Headloss	0	2
A	Flux	1	3
A	Velocity	0	4
	In dialysis, there is		
	pressure		
Q	difference across the membrane	M	1
A	little or no	1	
A	very high	0	
A	moderately high	0	
A	moderate	0	4
	In dead end filtration		
Q		M	1

	the fluid flows perpendicular to the			
A	surface of the membrane		1 1	Ĺ
	the fluid flows parallel to the surface of			
A	the membrane		0 2	<u>,</u>
A	Both (a) and (b)		0 3	}
A	None of the above		0 4	Ļ
Q	The driving force in electrodialysis is	М	1	Ĺ
A	moderately low pressure		0 1	
A	electric potential		1 2	
A	concentration difference		0 3	}
A	high pressure		0 4	ŀ
	does not cause membrane			
Q	fouling	M	1	L
A	slime formation		0 1	L
A	backflushing with permeate		1 2	<u>,</u>
A	microbial growth		0 3	}
A	colloidal deposition		0 4	Ļ
	is an example of inorganic			
Q	membranes	M	1	-
A	alumina alumina		1 1	
A	polypropylene		0 2	
A	Both (a) and (b)		0 3	
A	None of the above		0 4	ļ
	A raw water reservoir would be an			
	example of which membrane			
	pretreatment method (where the goal is			
	to reduce the loading and fouling potential			
	of the water fed to the membrane)?			
Q		M	1	
Α	filtration		0 1	
Α	clarification		1 2	
Α	chemical treatment		0 3	
A	centrifugation		0 4	ļ.

Q	Pervaporation method involves	М	1
A	Removal of ions	0	1
A	Production of potable water	0	2
A	Purification of aqueous streams	0	3
	Separation and concentration of liquid		
A	mixture.	1	4
Q	Adsorption equilibrium is called as	М	1
A	Adsorption isotherm	1	1
A	Equilibrium adsorption	0	2
A	Particulates adsorption	0	3
A	Surface adsorption	0	4
	A vertical cylindrical tube filled with		
Q	adsorbent beads is	М	1
A	Agitated reactor	0	1
A	Tray reactor	0	2
A	Fixed bed reactor	1	3
A	Column reactor	0	4
Q	CSTR stands for	М	1
A	Continuous simple tank reactor	0	1
A	Continuous simple tank reaction	0	2
A	Continuous stirred tank reactor	1	3
A	Continuous stirred tank reaction	0	4
	The reversible phenomenon occurring at		
Q	the surface of solid is	М	1
A	Desorption	0	1
A	Adsorption	1	2
A	Absorption	0	3
A	Equilibrium	0	4
	The methods used to adsorb solutes from		
Q	the liquid phase is	M	1
Α	Batch adsorption	1	1
A	Continuous adsorption	0	2
A	CSTR adsorption	0	3

Α	Discontinuous adsorption	0	4
	The process where solid particles of		
	specified size and shape are formed from a		
Q	homogeneous phase is	М	1
A	Packing	0	1
A	Finishing	0	2
A	Crystallization	1	3
A	Formulation	0	4
Q	Crystallization occurs only in	М	1
A	Saturated solution	1	1
A	Unsaturated solution	0	2
A	Solute	0	3
A	Solvent	0	4
	Subsequent to nucleation or the addition		
Q	of seed material formation of	М	1
A	Saturated solution	0	1
A	Unsaturated solution	0	2
A	Crystal growth	1	3
A	Supersaturation	0	4
	Supersaturated solutions are		
Q	thermodynamically	М	1
A	Stable	0	1
A	Volatile	0	2
A	Non-volatile	0	3
A	Unstable	1	4
	The degree of supersaturation of a		
Q	solution is measured in terms of	М	1
Α	Supersaturation equivalent	0	1
A	Supersaturation coefficient	1	2
Α	Supersaturation solution	0	3
A	Supersaturation solute	0	4

	That point when the humidity decreases			
	linearly with the drying conditions is			
Q	known as	M		1
A	Constant drying period		0	1
A	Falling-rate period		1	2
A	Heating region		0	3
A	Critical region		0	4
	Dryers can generate internal heating in the			
Q	feed by	M		1
A	Dielectric or inductive heating		1	1
A	Convection		0	2
A	Conduction		0	3
A	Evaporation		0	4
Q	Which dryer used radiation for drying?	M		1
A	Spray dryer		0	1
A	Drum dryer		0	2
A	Flash dryer		0	3
A	Microwave dryer		1	4
	The moisture content of solid in excess of			
	the equilibrium moisture content is			
Q	referred as	M		1
A	Bound moisture		0	1
A	Free moisture		1	2
A	Moisture		0	3
A	Total Moisture		0	4
Q	A propeller agitator	M		1
A	Produces mainly axial flow		1	1
Α	Used for mixing high viscous pastes		0	2
A	Runs at slow speed		0	3
A	Used for low viscous fluids		0	4

	Find the weight of the wet solid if dry solid		
Q	is 2 kg and the moisture is 0.5 kg.	М	1
A	2 kg	0	1
A	2.5 kg	1	2
A	3 kg	0	3
A	3.5 kg	0	4
	Find the moisture content in dry basis if		
	the weight of dry solid is 5 kg and the		
Q	moisture is 2 kg.	М	1
A	0.2	0	1
A	0.3	0	2
A	0.4	1	3
A	0.5	0	4
	How does the heat transfer occurs in the		
Q	indirect-heat continuous dryers?	М	1
A	Conduction	1	1
A	Convection	0	2
A	Radiation	0	3
A	Circulation	0	4
	Which of the following is not the		
	component of aeration and agitation		
Q	system?	М	1
A	Impeller	0	1
A	Baffles	0	2
A	Stirrer gland and bearing	0	3
A	Thermometer	1	4
	Find the moisture content in wet basis if		
	the weight of the dry solid is 3 kg and the		
Q	weight of the moisture is 2 kg.	М	1
A	0.1	0	1
A	0.2	0	2

А	0.3	0	3
A	0.4	1	4
	Moisture content of a substance which		
	exerts as equilibrium vapour pressure less		
	than of the pure liquid at the same		
Q	temperature is referred to as	M	1
A	Bound moisture	1	1
A	Unbound moisture	0	2
A	Moisture	0	3
A	Total Moisture	0	4
	agents prevent the reformation		
	of disulphide bonds between the amino		
Q	acid molecules.	M	1
A	Chaotropic	1	1
A	Reducing	0	2
A	Oxidising	0	3
A	Hydrating	0	4
Q	How are gamma interferon produced?	М	1
A	Produced by virus-infected leukocytes	0	1
A	Produced by virus-infected fibroblasts	0	2
A	Produced by activated NK cells	1	3
Q	Choose the correct statement	М	1
A	Taq polymerase is having high processivity	0	1
	Processivity is defined in this case as a		
A	synthesis of DNA by polymerase	1	2
	It requires a 5' end for the elongation to		
A	take place	0	3

	The maximum size of the molecules which		
A	can be synthesized is 10kbp	0	4
	HCCF collection from mammalian cell		
Q	culture stands for	М	1
A	Hybridoma cell culture fluid	0	1
A	Hyper cell culture fluid	0	2
A	Harvested cell culture fluid	1	3
A	High cell culture fluid	0	4
	solvent is used for extraction of		
Q	Penicillin	М	1
A	Butyl Acetate	1	1
A	Alkyl Acetate	0	2
A	Sodium Acetate	0	3
A	Ethyl Acetate	0	4
	Which of the following fungal strain is used		
Q	for production of penicillin?	М	1
A	Penicillium chrysogenum	1	1
A	Streptomyces nodosus	0	2
A	Bacillus subtilis	0	3
A	Bacillus polymyxa	0	4
Q	How is alpha interferon produced?	М	1
A	Produced by virus-infected leukocytes	1	1
A	Produced by virus-infected fibroblasts	0	2
A	Produced by activated NK cells	0	3
A	Produced by bacterial activated leukocytes	0	4
	The major hazards of Monoclonal		
Q	antibodies are	М	1
Α	Difficult in purification	0	1
	Contamination with retroviral particles		
A	from mouse myeloma cells	1	2

А	Non specificity	0	3
Α	Infection	0	4
	Most suitable long term storage method		
	for recombinant Tissue Plasminogen		
Q	Activator is	M	1
А	Freezing	0	1
Α	Crystallization	0	2
Α	Drying	0	3
А	Lyophilization	1	4
	Which of the following enzyme is not		
Q	present in S. cerevisiae?	M	1
А	Maltase	0	1
А	Invertase	0	2
А	Zymase	0	3
А	Cellulase	1	4
	Regeneration of anion exchange Resin is		
Q	usually done by using	M	1
А	sodium hydroxide	1	1
А	sodium chloride	0	2
А	calcium chloride	0	3
A	hydrochloric acid	0	4
	Regeneration of cation exchange Resin is		
Q	usually done by using	M	1
A	hydrochloric acid	1	1
A	sodium hydroxide	0	2
Α	sodium chloride	0	3
А	calcium chloride	0	4
	In some cases, physisorption of a gas		
	adsorbed at low temperature may change		
Q	into chemisorption at	M	1
А	low temperatures	0	1
А	high temperatures	1	2
Α	high adsorbent concentration	0	3

A	low adsorbent concentration	0	4
Q	Chemisorption involves	М	1
A	no activation energy	0	1
A	high activation energy	1	2
A	very low activation energy	0	3
A	moderately low activation energy	0	4
Q	Physisorption involves	М	1
A	no activation energy	0	1
A	high activation energy	0	2
A	very high activation energy	0	3
A	low activation energy	1	4
Q	Chemisorption is	М	1
A	Exothermic and irreversible	1	1
A	Exothermic and reversible	0	2
A	Endothermic and irreversible	0	3
A	Endothermic and reversible	0	4
	buffers are used in conjunction		
Q	with anion exchangers	M	1
A	Anionic	0	1
A	Cationic	1	2
A	Neutral	0	3
A	Phosphate	0	4
Q	is not an anionic buffer	M	1
A	acetate	0	1
A	barbiturate	0	2
A	phosphate	0	3
A	Tris	1	4
	The membrane separation technique is		
	competing with other separation		
Q	technologies in terms of	M	1
Α	Energy efficiency	0	1
A	High separation capacity	0	2

	Selective separation and capital		
A	investments	0	3
A	All of the above	1	4
	Microfiltration and ultrafiltration fall in		
	which category of membrane operations?		
Q		M	1
A	Molecular separations	1	1
A	Chemical transformations	0	2
	Mass and energy transfer between		
A	different phases	0	3
A	None of the above	0	4
Q	Dialysis in our kidney is a	М	1
A	Pressure driven separation process	0	1
A	Thermally driven separation process	0	2
	Concentration driven separation process		
A		1	3
A	None of the above	0	4
	Membrane selection depends on a variety		
Q	of factors including	М	1
A	The composition of the feed solution	0	1
A	Operating parameters	0	2
	Application types and separation goals		
A		0	3
A	All of the above	1	4
	The flux of each component in		
Q	pervaporation is proportional to	М	1
A	concentration gradient	0	1
A	diffusivity in the dense layer	0	2
A	Both (a) and (b)	1	3
A	None of the above	0	4
	The first commercial application of		
Q	pervaporation was for	М	1
A	ethanol-water separation	1	1

A	protein purification	0	2
A	citric acid purification	0	3
A	bioseparation of antibiotics	0	4
	The separation mechanism in		
Q	electrodialysis is	M	1
A	sieving	0	1
A	solution diffusion	0	2
A	ion migration	1	3
A	sieving and diffusion	0	4
	Concentration polarization at the		
	membrane surface is a		
Q		M	1
A	Short term and irreversible effect	0	1
A	short term and reversible effect	1	2
A	long term and irreversible effect	0	3
A	long term and reversible effect	0	4
	A continuous type crystallizer designed to		
Q	make large, uniform crystals is	М	1
A	Oslo crystallizer	0	1
A	Krystal crystallizer	0	2
A	Swenson walker crystallizer	1	3
A	Cooling crystallizer	0	4
Q	Which are the types of crystallization?	М	1
A	Evaporative crystallization	1	1
A	Cycling crystallization	0	2
A	Mixing crystallization	0	3
A	Cooling crystallization	0	4
Q	Crystallisation is based on the	М	1
A	Difference in melting point	0	1
A	Difference in boiling point	0	2
A	Difference in pressure	0	3

A	Difference in solubility	1	4
	Which of the following is known as mother		
Q	liquor?	M	1
A	Solvent	0	1
A	Solute	0	2
A	Solution	0	3
A	Filtrate	1	4
	What is not an advantage of using		
Q	mechanical agitation?	M	1
A	High purity	0	1
A	Uniform crystal size	0	2
A	High purity	0	3
A	Low rate of primary nucleation	1	4
	The smallest portion of a crystal which		
	when repeated in different directions		
Q	generates the entire crystal is called:	M	1
A	Lattice points	0	1
A	Crystal lattice	0	2
A	Unit cell	1	3
A	None of the mentioned	0	4
	A process in which solid particles of		
	specified size and shape are formed from a		
Q	homogeneous phase is	M	1
A	Saturation	0	1
A	Concentration	0	2
A	Crystallization	1	3
A	Finishing	0	4
	Which of the following is not a common		
Q	method used for purification?	M	1
A	Sublimation	0	1
A	Crystallisation	0	2

A	Electrolysis	1	3
A	Chromatography	0	4
	Which one of the following is used to		
	completely remove water and helps in		
Q	preservation of foods?	М	1
A	Desiccation	1	1
A	Dehydration	0	2
A	Drying	0	3
A	Dewatering	0	4
	Dehydration removes moisture		
Q	efficiency as Desiccation	М	1
A	With less	1	1
A	With more	0	2
A	With same	0	3
A	With very much larger	0	4
	How the liquid does gets separated in		
Q	freeze dryer?	M	1
A	Boiling	0	1
A	Distillation	0	2
A	Freezing and crystallization	1	3
A	Evaporation	0	4
	Which materials are not used in drying in a		
Q	freeze dryer?	M	1
A	Seafood	0	1
A	Fruits	0	2
A	Pharmaceuticals	0	3
A	Dyes	1	4
	Which of the following method is		
	technically and economically sound to dry		
Q	out slurry from sewage plant?	М	1
Α	Tray Dryers	0	1
A	Spray Dryers	0	2
A	Drum Dryer	1	3

A	Lyophilization	0	4
	During drying process, why does the		
Q	moisture content does not drop to 0 oC?	М	1
A	Inability to dry out bound moisture	1	1
	Saturation of water vapours in the drying		
A	chamber	0	2
A	Low grade drying instrument	0	3
A	Inability to dry out unbound moisture	0	4
	The non-agitated fermentations are		
	carried out in vessels of a height/diameter		
Q	ratio of	М	1
A	1 as 2	0	1
A	5 as 1	1	2
A	3 as 2	0	3
A	4 as 1	0	4
Q	TAQ polymerase is sourced from	M	1
A	Escherichia coli	0	1
A	Pseudomonas aeruginosa	0	2
A	Aspergillus niger	0	3
A	Thermophilus aquaticus	1	4
Q	What are antibiotics?	М	1
A	Nutrient supplements	0	1
A	Anti-cancer drugs	0	2
A	Anti-microbial drugs	1	3
A	Anti-ulcer drugs	0	4
	is a cleaved and converted into		
Q	biologically active form of Insulin	M	1
^	ProInsulin	1	1
^	Prepinsulin	0	1
^		0	2
A	B-Insulin	U	3

A	Greater Insulin	0	4
	Which of the following reagent is used for		
Q	refolding of tissue plasminogen activator?	М	1
A	Arginine	1	
A	Proline	0	
A	Threonine	0	
A	Valine	0	
	Which following method is used to	J	
	inactivate endogenous virus from		
Q	Monoclonal antibodies?	М	1
A	Viral filtration	1	1
A	Adsorption	0	
A	Chemical inactivation	0	3
A	High pH	0	4
	Which of the following activity is not		
Q	present in Taq polymerase?	М	1
A	5'-3' polymerase	0	1
A	5'-3' exonuclease	0	2
A	3'-5' exonuclease	1	3
A	3'- 5'polymerase	0	4
	During dehydration step 200 Proof Ethanol		
Q	grading refers to	М	1
	100% absolute (undenatured) Ethyl		
A	Alcohol	1	1
A	90% absolute (undenatured) Ethyl Alcohol	0	2
A	80% absolute (undenatured) Ethyl Alcohol	0	3
A	70% absolute (undenatured) Ethyl Alcohol	0	4
	<u>.</u>		
Q	Leavening agent for yeast describes as	М	1

A	Expansion of dough	0	1
A	Results in light airy physical structure	1	2
A	Development of flavor	0	3
A	Development of fragrance	0	4
	The equilibrium characteristics of the		
	solubility of a gas in liquid helps to		
Q	determine the	M	1
A	Rate	1	1
A	Concentration	0	2
A	Time	0	3
A	No existence of equilibrium characteristics	0	4
	As per the equilibrium solubility curve, the		
	temperature increases partial pressure		
Q	increases resulting in decreasing	M	1
A	Concentration	0	1
A	Equilibrium	0	2
A	Solubility	1	3
A	Absorption	0	4
Q	Packed columns are better analyzed by:	M	1
A	Mass transfer coefficients	1	1
A	Equilibrium stage methods	0	2
A	Graphical methods	0	3
A	Algebraical methods	0	4
	At the interface of liquid and vapor, which		
Q	interface exists?	M	1
A	Chemical	0	1
A	Physical	1	2
Α	Thermal	0	3
A	No equilibrium exists	0	4

	Find the false statement for the better		
Q	choice of the absorbent.	М	1
A	Gas solubility should be high	0	1
A	Vapour pressure should be low	1	2
A	Viscosity should be high	0	3
A	Low freezing point	0	4
	Find the most common example for		
Q	absorption.	М	1
A	Ammonia and air in solvent water	1	1
	Ammonia and Carbon dioxide in solvent		
A	water	0	2
A	Methane and air in solvent water	0	3
	Methane and Carbon dioxide in solvent		
A	water	0	4
	Which of the following is not an example		
Q	of ideal solution?	M	1
A	Solution of benzene in toluene	0	1
A	Solution of ethyl and propyl alcohol	0	2
A	Paraffin hydrocarbon gas in paraffin oil	0	3
A	Solution of isobutane and olefins	1	4
	According to Raoult's law, for a pure		
	component solution the partial pressure is		
Q	equals to	М	1
A	Total pressure	0	1
A	Vapour pressure	1	
A	Atmospheric pressure	0	
A	Mole fraction of respective phase	0	4
	Active insulin consists of how many		
Q	polypeptide chains?	М	1
A	1	0	
A	2	1	2
A	3	0	3

A	4	0	4
	affect the selectivity		
	and flux through the membrane.		
Q		M	1
A	Concentration polarization	0	1
A	membrane fouling	0	2
A	Both (a) and (b)	1	3
A	Solubility	0	4