Program: BE Civil Engineering

Curriculum Scheme: Revised 2016

Examination: Fourth Year Semester VII

Course Code: CE-C702 and Course Name: Theory of Reinforced Concrete Structures

Time: 1hour

Max. Marks: 50

Note to the students: - All the Questions are compulsory and carry equal marks.

For the numerical answers, **choose the closest option.**

Q1.	If bending moment due to applied loading exceeds the balanced moment capacity	
	of the beam, which of the following section shall be designed?	
Option A:	Singly Reinforced	
Option B:	Over-Reinforced	
Option C:	Doubly Reinforced	
Option D:	Balanced	
Q2.	How much percentage increase in the permissible load of column is allowed for a	
	column reinforced with helical reinforcement satisfying the IS Code check as per	
	WSM?	
Option A:	5%	
Option B:	10%	
Option C:	3%	
Option D:	30%	
Q3.	In WSM, if effect of torsional moment (T) is to be considered in the design, then it	
	shall be added to which of the following?	
Option A:	Only in shear force	
Option B:	Only in Bending Moment	
Option C:	Both in shear force and bending moment	
Option D:	Only in dead load.	
Q4.	What is moment of resistance for the over-reinforced section having b = 230 mm,	
	d = 450 mm, d' = 40, Asc = 603.19 sq.mm and Ast = 942 sq.mm and depth of NA =	
	148.62 mm? Take M 20 and Fe 415. Choose closest answer. Use WSM.	
Option A:	71.94 kN m	
Option B:	131.54 kN m	
Option C:	33.87 kN m	
Option D:	22.07 kN m	

Q5.	In WSM what is minimum reinforcement required for a beam having 230 mm		
	width and 500 mm effective depth? Use Fe 500		
Option A:	315.24 sq. mm		
Option B:	138.57 sq. mm		
Option C:	578.89 sq. mm		
Option D:	195.5 sq. mm		
Q6.	Partial safety factor for steel and concrete in LSM is,		
Option A:	1.3 and 1.5		
Option B:	1.15 and 1.5		
Option C:	1.5 and 1.15		
Option D:	1.0 and 1.3		
Q7.	In Limit state method of design, compressive strength of concrete in the structure shall be assumed as,		
Option A:	2/3 times the characteristic strength.		
Option B:	1/2 times the characteristic strength.		
Option C:	1/4 times the characteristic strength.		
Option D:	1/3 times the characteristic strength.		
Q8.	Which one of the following statements is wrong		
Option A:	WSM is based on Elastic Theory		
Option B:	LSM is based on actual stress-strain curves of steel and concrete.		
Option C:	Exact margin of safety is known in WSM method.		
Option D:	WSM gives thicker sections so less economical.		
	U		
Q9.	A reinforced concrete rectangular beam having 300mm width and 500mm		
	effective depth is subjected to an ultimate shear force of 90kN. What will be the		
	nominal shear stress for this beam section? (use LSM)		
Option A:	0.9N/sq. mm		
Option B:	0.6N/sq. mm		
Option C:	0.5N/sq. mm		
Option D:	1.35N/sg. mm		
Q10.	As per LSM, Characteristic strength fy of stirrups or bent up bars shall not be		
	taken greater than		
Option A:	250N/sg. mm		
Option B:	500N/sg. mm		
Option C:	415N/sg. mm		
Option D:	300N/sg. mm		
011	The maximum shear stress in a rectangular beam is how many times that of		
	average shear stress?		
Option A:	1.15		
Option B:	1.25		
Option C:	1 75		
	1.7.5		

Option D:	1.5	
Q12.	In LSM, maximum spacing of vertical stirrups permitted is	
Option A:	d or 300mm	
Option B:	0.5d 0r 200mm	
Option C:	0.75d or 300mm	
Option D:	3d or 300mm	
Q13.	A reinforced concrete beam having 300 mm width and 450mm depth is	
	subjected to an ultimate shear force of 40kN and an ultimate torsional moment	
	of 30kNm. What will be the equivalent shear in the beam section? Use LSM	
Option A:	40kN	
Option B:	200kN	
Option C:	150kN	
Option D:	100kN	
Q14.	What is the factored moment of resistance for a beam with $b = 230 \text{ mm}$, $d = 450$	
	mm, Asc = 804.25 sqmm, Ast = 1963.5 sqmm d' =67.5 mm? Take M 20 and Fe 415.	
	Take <i>fsc</i> = 342 MPa. Use LSM. Consider appropriate rounding for MR.	
Option A:	234 kN m	
Option B:	435 kN m	
Option C:	137 kN m	
Option D:	318 kN m	
0.15		
Q15.	If a flanged beam with 1000 mm width of flange and 500 mm effective depth is	
	ie if thickness of slob is 120 mm2 Take M 20 and 56 415 Line LSM	
Option A:	Ine, IT UNICKNESS OF SIAD IS 120 INTEL TAKE IVI 20 AND FE 415. USE LSIVI	
Option A:		
Option C:	At the junction of Web and Elange	
Option D:	Below the web	
Option D.		
016	A beam baying 230 mm as width 350 mm as effective denth and 942 sq mm as	
Q10.	the area of reinforcement, what is the type of the section if M 20 and Fe 415 are	
	used? Use LSM.	
Option A:	under-reinforced section	
Option B:	over reinforced section	
Option C:	balanced section	
Option D:	doubly reinforced section	
Q17.	In case of two way slab, the limiting deflection of the slab is	
Option A:	Dependent on both long and short span	
Option B:	Primarily a function of the long span	
Option C:	Independent of long or short span	
Option D:	Primarily a function of the short span	
•	, i	

Q18.	For two way slabs of shorter span up to 3.5m and loading class up to 3KN/sq.m,	
	the span to overall depth ratio for continuous slabs, provided with Mild steel	
	bars is	
Option A:	20	
Option B:	26	
Option C:	40	
Option D:	32	
Q19.	The limits of percentage p of the longitudinal reinforcement in a column is give	
Option A:	0.15 % to 2 %	
Option B:	0.8 % to 4 %	
Option C:	0.8 % to 6 %	
Option D:	0.8 % to 8 %	
Q20.	The maximum eccentricity to be considered in a R.C. column of length subject to a minimum of 20 mm 1 is	
Option A:	(L/400)+(lateral dimension/30)	
Option B:	(L/500)+(lateral dimension/30)	
Option C:	(L/500)+(lateral dimension/25)	
Option D:	(L/400)+(lateral dimension/25)	
Q21.	Minimum diameter of longitudinal bar in columns is	
Option A:	12mm	
Option B:	8mm	
Option C:	10mm	
Option D:	16mm	
Q22.	In the case of pedestals nominal longitudinal reinforcement shall not be less than	
Option A:	0.18% of the cross sectional area	
Option B:	0.20% of the cross sectional area	
Option C:	0.15% of the cross sectional area	
Option D:	0.10% of the cross sectional area	
Q23.	In designing rectangular combined footing, what should be adopted as the design value?	
Option A:	Stress distribution	
Option B:	Compression index	
Option C:	Maximum bending moment	
Option D:	Safe bearing pressure	
Q24.	According to IS 456-2000, the minimum cover required for reinforcements in footings shall be	
Option A:	25mm	
Option B:	40mm	

Option C:	20mm	
Option D:	50mm	
Q25.	Critical section for punching shear in isolated footings is taken at the periphery	
	surrounding the column	
Option A:	at a distance d/3from the face of column	
Option B:	at a distance d/2 from the face of the column	
Option C:	at a distance d from the face of the column	
Option D:	at a distance d/4 from the face of the column	

Program: BE Civil Engineering

Curriculum Scheme: Revised 2016

Examination: Fourth Year Semester VII

Course Code: CE-C702 and Course Name: Theory of Reinforced Concrete Structures

Time: 1hour

Max. Marks: 50

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	А
Q3.	C
Q4	А
Q5	D
Q6	В
Q7	А
Q8.	С
Q9.	В
Q10.	С
Q11.	D
Q12.	С
Q13.	В
Q14.	А
Q15.	В

Q16.	В
Q17.	D
Q18.	С
Q19.	С
Q20.	В
Q21.	А
Q22.	C
Q23.	С
Q24.	D
Q25.	В