Q=QUESTION	question_description	question_explanation	question_type	question_difficulty	
<mark>A=ANSWER</mark>	answer_description	answer_explanation	answer_isright	answer_position	
	If Unconditional stability condition is met, then the transistor				
Q	can be for any load		М	1	1
A	difficult to matche		0	1	
B	impidance mismatched		0	2	
C	impidance matched		1	3	
D	Easy to match		0	4	
	The network is unconditionally stable if the value of [in]				
0	and [Fourthis of for all passive source and load impedance		М	1	2
<u>م</u>	<1		1	1	2
B	>1		0	2	
C	=1		0	- 3	
D	0		0	4	
0	Conditional stability is also reffered as		M	1	3
A	potentially stable		0	1	-
В	potentially unstable		1	2	
с	fully stable		0	3	
D	fully unstable		0	4	
Q	The Rollets condition says that the value of K should be		М	1	4
A	<1		0	1	
B	>1		1	2	
C	=1		0	3	
D	0		0	4	
	The device to be unconditionally stable the value of μ should				
Q	be		М	1	5
A	=1		0	1	
В	0		0	2	
C	<1		0	3	
D	>1		1	4	

	In a two port network, the source impedance was measured			
	to be 5 Ω and the characteristic impedance of the			
	transmission line was measured to be 50 Ω . Then the			
Q	reflection coefficient at the source end is:	М	1	6
A	1	0	1	
B	-0.8182	1	2	
<mark>C</mark>	-0.333	0	3	
D	-0.01	0	4	
Q	The Transducer Power Gain ' G_{T} ' is given by	М	1	7
A	P _{avs} /P _{avn}	0	1	
B	P _{avn} /P _{avs}	0	2	
C	P _{avs} /P _L	0	3	
D	P _L /P _{avs}	1	4	
Q	In term of S parameter, the relation $ S_{21} / S_{12} $ is known as	М	1	8
A	Avalable gain	0	1	
B	Transducer Gain	1	2	
C	Total Gain	0	3	
D	Maximum gain	0	4	
	If the output power of an amplifier is 10 V, and the input			
	nower supplied to the amplifier is $0.5 V$ given that the DC			
0	voltage used is 40 V. efficiency of the power amplifier is:	М	1	9
A	23.75%	0	1	, c
B	26%	0	2	
с	50%	0	3	
D	75%	1	4	
	lange coupler is used into achive achieve the			
Q	required performance.	М	1	10
A	Unbalanced amplifiers	0	1	
В	balanced amplifiers	1	2	
С	Power amplifier	0	3	

D	Filter	0	4	
Q	The free running multivibrator is also called as	М	1	11
A	Bi Stable multivibrator	0	1	
B	Quasi Stable	0	2	
C	Voltage control oscillator	1	3	
D	Sine wave oscillator	0	4	
Q	Phase detector's output voltage is	М	1	12
A	Phase voltage	0	1	
B	Free running voltage	0	2	
C	Amplified Voltage	0	3	
D	Error voltage	1	4	
	Phase-locked loop tracks any change in input frequency in			
Q	which state	М	1	13
A	Phase locked state	1	1	
B	Free running state	0	2	
C	Capture state	0	3	
D	Buffer state	0	4	
Q	Function of low pass filter in phase-locked loop is	М	1	
A	Removes high frequency noise	1	1	14
B	Improves low frequency noise	0	2	
C	Tracks the voltage changes	0	3	
D	Changes the input frequency	0	4	
	What is the need to generate corrective control voltage in			
Q	PLL?	М	1	15
A	To filter the input	0	1	
B	To track the frequency change	1	2	
<mark>C</mark>	To amplify the input	0	3	
D	To Rectify the input	0	4	
Q	At what range the PLL can maintain the lock in the circuit?	М	1	16
A	Input range	0	1	
В	Output range	0	2	
C	Attenuation range	0	3	

D	Lock in range	1	4	
Q	The pull-in time dosen't depends on following	М	1	17
A	initial phase and frequency difference between two sign	0	1	
B	Overall loop gain	0	2	
C	Loop filter characteristics	0	3	
D	Power supply values	0	4	
Q	Analog phase detector is often referred as	Μ	1	18
A	Full wave detector	0	1	
B	Rectifier wave detector	0	2	
C	Half wave detector	1	3	
D	Active Filter	0	4	
	What happens when VCO output is 90 degrees out of phase			
Q	with respect to input signal?	Μ	1	19
A	Attenuation	0	1	
B	Shift in phase of comparator	0	2	
C	Perfect lock	1	3	
D	Error signal is removed	0	4	
	How to overcome the problem associated with switch type			
Q	phase detective?	Μ	1	20
A	Increase loop gain depending on input signal	0	1	
B	Phase shift is made linear	0	2	
<mark>C</mark>	Limit the amplifier of input signal	1	3	
D	rectify input	0	4	
	An RF input signal at 1.89GHz is required to be			
	downconverted to an output IF of 200MHz. The			
Q	required frequency of the local oscillator will be	М	1	21
A	1.69 GHz	0	1	
В	2.09 GHz	0	2	
С	Either 1.69 GHZ or 2.09 GHz	1	3	
D	3.5321GHz	0	4	

	Let the scattering parameters of a transistor in polar			
	forms are, S11 [Mag=2.18 , angle= -35], S12 [Mag= 1.26			
	, angle= 18], S21 [Mag=2.75 , angle= 96], S22			
	[Mag=0.52, angle= 155]. To test k-delta satbility, the			
Q	value of k is found to be	М	1	22
A	1	0	1	
В	0.21	1	2	
с	infinity	0	3	
D	0	0	4	
	Let the scattering parameters of a transistor in polar			
	forms are, S11 [Mag=2.18 , angle= -35], S12 [Mag= 1.26			
	, angle= 18], S21 [Mag=2.75 , angle= 96], S22			
	[Mag=0.52, angle= 155]. To test the satbility, delta is			
Q	found to be	М	1	23
A	2	0	1	
В	3	0	2	
С	4	0	3	
D	2.341	1	4	
Q	Conversion gain of a Mixer is defined as	М	1	24
	Output power in One sideband (IF)/ Signal input (RF)			
A	power	1	1	
	Signal input (RF) power/Output power in One sideband			
В	(IF)	0	2	
С	Signal input (RF) power / Total output power	0	3	
D	Total output power / Signal input (RF) power	0	4	
Q	Typical conversion effciency for Varactor multipliers is	М	1	25
A	Less than 25 percent	0	1	
В	Between 25 to 50 percent	0	2	
С	Between 50 to 80 percent	1	3	
D	More than 80 percent	0	4	

	If the parameters of a FET of a single ended FET mixer			
	are Rd=300 Ohm, Ri=10 Ohm, Cgs=0.3pF, g1=10mS and			
Q	if f= 2.4GHz, then the maximum conversion gain will be	м	1	26
A	Gc= 36.6 dB	0	1	
В	Gc=15.6 dB	1	2	
С	Gc= -36.6 dB	0	3	
D	Gc= -15.6 dB	0	4	
	Conversion loss of a down-conversion mixer in dB is			
Q	expressed as	м	1	27
A	Available IF input power /Available RF output power	0	1	
В	Available RF input power /Available IF output power	1	2	
С	Available LO input power /Available RF output power	0	3	
D	Available RF input power /Available LO output power	0	4	
Q	The efficiency of a resistive multipler drops as	м	1	28
A	1/m	0	1	
В	1/ (square of m)	1	2	
С	1/ (cube of m)	0	3	
D	1/ (m raised to power 4)	0	4	
Q	A RF Mixer is a	м	1	29
A	One port device	0	1	
В	Two port Device	0	2	
С	Three Port Device	1	3	
D	Four port device	0	4	
	Which of the following type of noise is induced at			
Q	higher frequencies operation of an Oscillator	м	1	30
A	Thermal noise	1	1	

B	White noise	0	2	
C	Shot noise	0	3	
D	Flicker noise	0	4	
Q	Characteristic Impedance is denoted as	М	1	31
A	Z ₀	1	1	
B	Z _i	0	2	
<mark>C</mark>	Z _n	0	3	
D	Z _x	0	4	
Q.	The value of Z _{i2} is given by	М	1	32
A	z _{i2} = Sqrt(AB/CD)	0	1	
B	z _{i2} = Sqrt(CD/AB)	0	2	
<mark>C</mark>	z _{i2} = Sqrt(BD/AC)	1	3	
D	z _{i2} = Sqrt(AC/BD)	0	4	
	In principle the Richards transformation replaces Capacitor			
Q.	by	М	1	33
A	Voltage Source	0	1	
B	Current Source	0	2	
C	Open Circuit	1	3	
D	Short Circuit	0	4	
Q	The expression of the open circuit impedance Z _{oc} is?	М	1	34
A	$Z_{oc} = Z_1 / 2 + Z_2$	1	1	
B	$Z_{oc}=Z_2/2+Z_2$	0	2	
<mark>C</mark>	$Z_{oc}=Z_1/2+Z_1$	0	3	
D	$Z_{oc}=Z_1/2-Z_2$	0	4	
	The Condition that corresponds to the wave does not			
	propagate, but is attenuated along the line; this defines the			
Q	stopband of the structure	М	1	35
A	α ≠ 0, β = 0,π	1	1	
В	$\alpha = 0, \beta = 0, \pi$	0	2	
С	α = 0, β ≠ 0,π	0	3	

D	α≠0, β≠0,π	0	4	
	For Equal Ripple Response which polynomial is used to			
Q	specify Insertion Loss	M	1	36
A	Chebyshev Response	1	1	
B	Poissons Response	0	2	
C	Butterworth Response	0	3	
D	Maxwells Response	0	4	
	For Equal-Ripple Low Pass Filter Prototype the filter will have			
Q	power loss ratio f $1+k^2$ at $\omega=0$ when	м	1	37
A	N is Odd	0	1	
В	N is Even	1	2	
C	N is some random number	0	3	
D	N is zero	0	4	
	For a constant k low pass filter section find the value of 'C', if			
Q	$fc = 4MHz$ and $R_0 = 75\Omega$	м	1	38
A	1.06nF	1	1	
В	2.06nF	0	2	
C	3.06nF	0	3	
D	4.06nF	0	4	
Q	The first stage in a four stage composite filter is	м	1	39
A	Constant k	0	1	
B	Sharp Cutoff	0	2	
C	Matching Section	1	3	
D	High f cutoff	0	4	
	After Impedance Scaling is done the new value of			
Q	Capacitence becomes	M	1	40
A	$C' = R_0 x C$	0	1	
B	$C' = R_0/C$	0	2	
С	$C' = C/R_0$	1	3	
D	C' = C	0	4	
Q	The circuit causing the interference is called	м	1	41
A	Static strength	0	1	

B	Receptor	0	2	
C	Source	1	3	
D	Noncoupling	0	4	
	The resistance R of a simple one conductor earth electrode			
Q	system is defined as	М	1	42
A	V/I	1	1	
B	1/V	0	2	
C	C/V	0	3	
D	V/C	0	4	
Q	What is abbreviation of EMI	М	1	43
A	Electromagnetic Interfernce	1	1	
B	Electromagnetic Compatibility	0	2	
C	Electronics Measurement Instrumentation	0	3	
D	Electomagnetic engineering	0	4	
	When the cause of the EMI problem is within the system			
Q	then it is called as	М	1	44
A	Intersystem EMI problem	1	1	
B	Intrasystem EMI problem	0	2	
C	Susceptor	0	3	
D	Emitter	0	4	
Q	The victim device affected by EMI is called	М	1	45
A	Susceptor	1	1	
B	Emitter	0	2	
C	Base and Emitter	0	3	
D	Base and Collector	0	4	
	EMI occur for a vory chart duration like pulses it is known as			
Q	Eivil occur for a very short duration like puises, it is known as	М	1	46
A	Continous EMI	0	1	
В	Impulse EMI	1	2	
C	Natural EMI	0	3	
D	Human-made EMI	0	4	
	When two conductors are used, when the noise is out of			
Q	phase on the conductors, it is said to operate in	М	1	47

A	Common Mode	0	1	
B	Conduction Coupling	0	2	
C	Differential Mode	1	3	
D	Radiation Coupling	0	4	
	When the cause of the EMI problem is within the system			
Q	then it is called as	М	1	48
A	Intersystem EMI problem	0	1	
B	Intrasystem EMI problem	1	2	
C	Susceptor	0	3	
D	Emitter	0	4	
	The sudden flow of electricity between two			
	electrically charged objects caused by contact, an electrical			
Q	short, or dielectric breakdown is called	М	1	49
A	Discharge	0	1	
B	Electrostatic discharge	1	2	
C	Electromagnetic interference	0	3	
D	Interference	0	4	
	The initial current rises very ranidly to a high neak value and			
	then gradually to the normal load current after			
	undergoing a damped oscillation at a frequency			
Q		Μ	1	50
A	Decrease	0	1	
B	Equal	0	2	
C	Decays	1	3	
D	Increase	0	4	
	Pulsars radiate electromagnetic noise, which is			
Q	a?	Μ	1	51
A	continuous wave	0	1	
B	similar to white noise	0	2	
C	in aperiodic pulses	0	3	
D	in pulses with constant repetition frequency	1	4	
	Extremely high votages due to the buildup of static electricity			
Q	occur in	Μ	1	52

A	objects with sharper radii such as furniture	0	1	
B	objects which do not have corners with sharper radii	1	2	
C	humid weather such as beach resorts	0	3	
	objects with corners having sharper radii under highly humid			
D	weather	0	4	
Q	Automobile ignition system generate EM noise due to	М	1	53
A	large transient current	1	1	
B	Short luminous steps	0	2	
C	small transient current	0	3	
D	interference	0	4	
	which of the following appliances has maximum electric field			
Q	intensity?	Μ	1	54
A	Electric blanket	1	1	
B	Boiler	0	2	
C	stereo	0	3	
D	Toaster	0	4	
	which of the following appliances has minimum electric field			
Q	intensity?	Μ	1	55
A	Hair dryer	0	1	
B	Coffee pot	0	2	
C	Stereo	0	3	
D	Incandescent bulb	1	4	
	During nuclear explosion, there is increase in conductivity			
Q	due to	Μ	1	56
A	protons pair generation by molecules	0	1	
B	ion pair generation by photons	1	2	
<mark>C</mark>	electron pair generation	0	3	
D	air density	0	4	
Q	cross-talk refers to	Μ	1	57
A	convection between EM waves	0	1	
B	coupling of EM waves	1	2	
C	Reflection of Em waves	0	3	

D	conduction of EM waves	0	4	
	Which of the following components does NOT cause passive			
Q	intermodulation?	М	1	58
A	ferrite isolators	0	1	
B	filters	0	2	
C	resistors	1	3	
D	connectors	0	4	
	Which of the following techniques are used for measuring			
Q	Antenna factor?	Μ	1	59
A	Standard site method	1	1	
B	OATS	0	2	
C	Anechoic Chamber	0	3	
D	Current probe	0	4	
	In an OATS, the maximum allowable terrain toughness at			
Q.	wavelength λ is given by	М	1	60
A	λ/8	0	1	
B	λ/6	0	2	
C	λ/4	0	3	
D	set by Rayleigh criterion	1	4	
Q	DDFS system is a Clock	1	1	61
A	Multiplier	0	1	
B	Adder	0	2	
C	Subtractor	0	3	
D	Divider	1	4	
Q	Programmable frequency dividers are	1	1	62
A	Highly frequency limited	1	1	
B	Noise limited	0	2	
<mark>C</mark>	Voltage limited	0	3	
D	Gain limited	0	4	
Q	The soil conductivity of earth is about	Μ	1	63
A	0.1 mhos/m	0	1	
В	0.01 mhos/m	1	2	

<mark>C</mark>	0.001 mhos/m	0	3	
D	1 mhos/m	0	4	
Q	The ocean conductivity is measured as	М	1	64
A	1 mhos/m	0	1	
B	2 mhos/m	0	2	
<mark>C</mark>	3mhos/m	0	3	
D	4mhos/m	1	4	
Q	Current pulse is also known as	М	1	65
A	Faraday's current	0	1	
B	Maxwell's current	0	2	
C	Compton's current	1	3	
D	Ohm's current	0	4	
	The downward moving gamma rays interact with			
Q	atmosphere at an altitude of	Μ	1	66
A	20-30km	0	1	
B	30-40km	0	2	
C	40-50km	1	3	
D	50-60km	0	4	
	The intensity of electromagnetic field generated by			
	nuclear explosion has an extended frequency range			
Q	upto	М	1	67
A	1 MHz	0	1	
B	10 MHz	0	2	
C	1 GHz	1	3	
D	10 GHz	0	4	
	The non linear I-V charactristics in a Resistive multipleirs			
Q	generally is obtained by using	М	1	68
A	Resistor	0	1	
В	Inductor	0	2	
С	Zener diode	0	3	
D	Forward-biased Schottky Barrier diode	1	4	

	Which of the following Oscilators have lower frequency			
Q	and power capabilities	М	1	69
A	Tunnel diode oscillator	0	1	
B	Gunn diode oscillator	0	2	
C	IMPATT diode oscillator	0	3	
D	Transistor Oscillator	1	4	
	Which of the following Oscilators offers better control			
	on oscillation frequency, temperature stability and			
Q.	output noise	М	1	70
A	Tunnel diode oscillator	0	1	
B	Gunn diode oscillator	0	2	
C	IMPATT diode oscillator	0	3	
D	Transistor Oscillator	1	4	
	Which of the following Oscilators lend themselves well			
	to frequency tuning, phase locking and various			
Q.	modulation requirement	М	1	71
A	Tunnel diode oscillator	0	1	
B	Gunn diode oscillator	0	2	
C	IMPATT diode oscillator	0	3	
D	Transistor Oscillator	1	4	
	Plot of propagation constant, β , versus the propagation			
Q	constant of the unloaded line, k (or ω) is called as	М	1	72
A	Venn Diagram	0	1	
B	Bloch Diagrams	0	2	
<mark>C</mark>	Rayleigh Diagram	0	3	
D	Brillouin Diagram	1	4	
	The formula to calculate the value of propagation			
Q	constant β is	М	1	73
A	$\beta = \nu (k^2 - K_c^2)$	1	1	
В	$\beta = \gamma(K_2^2 - k^2)$	0	2	
		÷		

С	$\beta = v(k^2 + K_c^2)$	0	3	
D	$\beta = \sqrt{k^2 / K_c^2}$	0	4	
	In Image Parameter Method, which condition tells that			
Q	the network is symmetrical	М	1	74
A	$Z_{11} = Z_{12}$	1	1	
B	$7.1 \neq 7.2$	0	2	
C C		0	2	
L	$z_{i1} + z_{i2} = 0$	U	3	
D	$z_{i1} - Z_{i2} = 0$	0	4	
	Find the value of cutoff frequency f _c for Low Pass Filter			
	if the values of L and C are 11.94μH and 2.122 nF			
Q	respectively.	М	1	75
A	4 MHz	0	1	
B	3 MHz	0	2	
<mark>C</mark>	2 MHz	1	3	
D	1 MHz	0	4	
Q	Maximally Flat characteristics are also called as	М	1	76
A	Chebyshev Response	0	1	
B	Poissons Response	0	2	
C	Butterworth Response	1	3	
D	Maxwells Response	0	4	
	What is the condition required to cascade two lower			
Q	order filters to obtain good attenuation characteristics	М	1	77
A	N<10	0	1	
B	N>10	1	2	
C	N=10	0	3	
D	N=0	0	4	
	For Equal-Ripple Low Pass Filter Prototype the filter will			
Q	have unity power loss ratio at ω =0 when	М	1	78
A	N is Odd	1	1	

B	N is Even	0	2	
C	N is some random number	0	3	
D	N is zero	0	4	
	After Impedance Scaling is done the new value of			
Q.	Inductance becomes	М	1	79
A	$L' = R_0 x L$	1	1	
B	$L' = R_0/L$	0	2	
<mark>c</mark>	$L' = L/R_0$	0	3	
D	L' = L	0	4	
	If the S parameters of a transistor given are :S11=-0.811-			
	j0.311, S12= 0.0306+j0.0048, S21=2.06+j3.717, S22=-			
Q	0.230-j0.4517. Then Δ for the given transistor is:	М	1	80
A	0.336	1	1	
B	0.383	0	2	
<mark>C</mark>	0.456	0	3	
D	1	0	4	
	In the S matrix of a transistor, if the parameter S_{21} is 2.6			
Q	then the gain G_{\circ} of the transistor has the value	Μ	1	81
A	6.2 dB	0	1	
B	8.3 dB	1	2	
<mark>C</mark>	2.22 dB	0	3	
D	1.22 dB	0	4	
	If the output power of an amplifier is 10 V, and the input			
	power supplied to the amplifier is 0.229 V given that the			
	DC voltage used is 38.5 V, efficiency of the power amplifier			
Q	is:	М	1	82
A	25%	1	1	
В	50%	0	2	
C	75%	0	3	
D	35%	0	4	

	If a power amplifier has an output power of 10 W, and an			
0	amplifier gain of 16.4 dB, then the input drive power is:	M	1	02
Q ^	400 mW		1	85
A	400 IIIW	0		
Б	220 mW	1	2	
	229 IIIW	1	3	
U	240 IIIVV	0	4	
0	which device is used for diagnostic purposes and for	M	1	0.4
Q ^	leur pass filter	0	1	84
A	Low pass filter	0	1	
B		0	2	
	crystal oscillator	0	3	
D	VCO	1	4	
	Find the value of R_s for following specifications S_{11} =0.869 \angle -			
Q	159°,S ₁₂ =0.031∠-9°, S ₂₁ =4.250∠61°, S ₂₂ =0.507∠-117°	м	1	85
A	0.305	0	1	
B	0.405	0	2	
C	0.105	0	3	
D	0.205	1	4	
Q	What is full form of RE	м	1	86
A	Radition Electric Network	0	1	
B	Radiated Emission	1	2	
C	Radio Engineering	0	3	
D	Radar Engineering	0	4	
Q	What is full form of RS	м	1	87
A	Radiated Susceptibility	1	1	
В	Radio station	0	2	
C	Radiated Sources	0	3	
D	Radar Engineering	0	4	

	An electromagnetic disturbance coupled from one circuit to			
	another through a common earth or ground-return path is			
Q	called	Μ	1	88
A	Ground internet	0	1	
B	Ground Path	0	2	
C	Ground shielding	0	3	
D	Ground coupled interference	1	4	
Q	How interference is avoided in power supply lines?	М	1	89
A	Ground Path	0	1	
B	Power line filter	1	2	
<mark>C</mark>	Electric field Coupling	0	3	
D	Noncoupling	0	4	
Q	LISN stand for	М	1	90
A	Lighting Impedance Stabilisation Network	0	1	
B	Line Impedance Stabilisation Network	1	2	
<mark>C</mark>	Linear Impedance Stabilisation Network	0	3	
D	Look Impedance Stabilisation Network	0	4	
Q	What is the main objective of LISN?	М	1	91
A	Provide constant impedance over range of frequency	0	1	
B	Provide pure power without EM noise	0	2	
C	Linear Impedance Stabilisation Network	0	3	
D	Both A and B	1	4	92
	Conducted emission as electromagnetic energy created by			
	device and transmitted in the form of the electric current is			
Q	called	М	1	
A	Conducted EMI	1	1	
B	Radiated EMI	0	2	
C	Radiated Susceptibility	0	3	
D	Electric field Coupling	0	4	
	is useful in creating desired wave pattern			
Q	such as binary bit pattern of a computer.	М	1	93
A	Time domain analysis	0	1	
В	Frequency domain analysis	1	2	

C	Radio Frequency analysis	0	3	
D	Network Analysis	0	4	
Q	The effects of EMI can not be reduced by	М	1	94
A	Reducing the efficiency of the coupling path	0	1	
B	Reducing the susceptibility of the receptor	0	2	
C	Suppressing emissions	0	3	
D	Static strength	1	4	
Q	The opposite of susceptibility is	М	1	95
A	Interference	0	1	
B	Immunity	1	2	
C	Emission	0	3	
D	Electromagnetic compatibility	0	4	
	Determine the offset frequency of frequency translation,			
	when the output and input frequency are given as 75kHz and			
Q	1000Hz.	М	1	96
A	35 kHz	0	1	
B	20 kHz	1	2	
C	29 kHz	0	3	
D	14 kHz	0	4	
Q	The frequency corresponding to logic 1 state in FSK is called	М	1	97
A	Space frequency	0	1	
B	Mark frequency	1	2	
<mark>C</mark>	Both mark and space frequency	0	3	
D	Cut off Freq	0	4	
Q	Find the frequency shift in FSK generator?	М	1	98
A	230 Hz	0	1	
В	250 Hz	0	2	
C	180 Hz	0	3	
D	200Hz	1	4	
	Which of the following is not the characteristics of Frequency			
Q	Synthesizers?	М	1	99
A	Sinusoidal Output	0	1	

В	High stability	0	2	
С	High Accuracy	0	3	
D	zero output impedance	1	4	
Q	The Modern Direct Digital Frequency Synthesis uses	Μ	1	100
A	A/Dconverters	0	1	
В	D/A onverters	1	2	
С	V/F Converters	0	3	
D	Harmonic Converter	0	4	

Unit 2