Q	Empirical Models can be used for?	М	1
A	System which are simple	0	1
A	System which is understood	0	2
A	System which are highly complex	1	3
A	System have one independent variable	0	4
Q	Theoretical Modelling is based on?	м	1
A	Chemistry & Physics of Process	1	1
A	Experiments data	0	2
A	Rigorous data	0	3
A	Simulation	0	4
<mark>Q</mark>	Empirical Modelling is basically derived using?	м	1
A	Conservation Equations	0	1
A	Experimental data	1	2
A	Chemistry & Physics of Process	0	3
A	Simulation	0	4
<mark>Q</mark>	For Complex model which modelling technique is not mostly preferred?	м	1
A	Empirical Modelling	0	1
A	Theoretical Modelling	1	2
A	Variable Modelling	0	3
A	Parameter Modelling	0	4
<mark>Q</mark>	Parameter estimation on model development using regression is based on?	M	1
A	Maximisation of difference between model predictions and data.	0	1
A	Model predictions are varying exponential as data calculated.	0	2
A	Minimisation of difference between model predictions and data.	1	3
A	Model predictions are square of the data.	0	4
Q	Equation of motion is	м	1
A	Conservation of mass	0	1
A	Conservation of energy	0	2
A	Conservation of momentum	1	3

A	Component continuity equation	0	4
Q	The model equation describe chemical kinetics	М	1
A	Law of mass action	1	1
A	Raoult's law	0	2
A	Daltons's law	0	3
A	Phase equilibrium relations	0	4
<mark>Q</mark>	Which model follows the changes over time that results from the system activities	М	1
A	Dynamic model	1	1
A	Static model	0	2
A	Analytical model	0	3
A	Numerical model	0	4
<mark>Q</mark>	Mathematical models are based on	М	1
A	Analogy between such systems are mechanical and electrical	0	1
A	Mathematical equations to represent the system	1	2
A	Analysis	0	3
A	Numerical methods	0	4
	Which model based on physical and chemical laws, thermodynamics, chemical		
<mark>Q</mark>	reaction, kinetics are frequently employed in optimization application	М	1
A	Process model	0	1
A	Mathematical model	1	2
A	Empirical model	0	3
A	Linear model	0	4
	Which model can be devised to correlate input output data without any		
<mark>Q</mark>	physiochemical analysis of the process	М	1
A	Linear model	0	1
A	Process model	0	2
A	Mathematical model	0	3
A	Empirical model	1	4
	Which type of mathematical model takes into account detailed variations in		
Q	behavior from point to point throughout the system?	М	1
A	Distributed parameter model	1	1

A	Lumped parameter model		0	2
A	Steady state model		0	3
A	Unsteady state model		0	4
Q	The process of proving that a mathematical model describes the real world situation is	M		1
A	Tearing		0	1
A	Optimization		0	2
A	Verification		1	3
A	Initialization		0	4
	In a perfectly insulated well stirred tank a hot liquid stream at 60 deg C is mixed with			
	a cold stream at 10 deg C. The well mixed assumption means that the fluid			
Q	temperature in the tank is uniform and equal to the temperature at the exit from tanl.	M		1
A	Distributed		0	1
A	Lumped		1	2
A	Unsteady state		0	3
A	Non Linear		0	4
Q	What is a Process Model?	M		1
A	It is a set of equations that allows us to predict the behavior of a chemical process		1	1
	It describes processes in flow diagrams where unit operations are positioned and			
A	connected by product streams		0	2
	It is number of independent variables whose value must be assigned to obtain the			
A	values of other variables and to completely define the system.		0	3
	It is the discipline of adjusting a process so as to optimize some specified set of			
A	parameters without violating some constraint		0	4
Q	Antoine model is applicable for which of the following cases?	M		1
A	High Pressure System		0	1
A	Low Pressure System that behaves ideally		1	2
A	High Pressure System that behaves ideally		0	3
A	Low Pressure System		0	4
Q	For a system to be exactly specified	М		1
~				-

A	No of equations=no of unknown variables		1	1
A	No of equations< no of unknown variables		0	2
A	No of equations > no of unknown variables		0	3
A	No of equations < no of all variable present		0	4
	For a CSTR with cooling jacket, the model used with breakup of the jacket volume			
<mark>Q</mark>	into number of perfectly mixed lumps is	M		1
A	Plug flow cooling jacket		0	1
A	Lumped jacket model		1	2
A	Perfectly mixed cooling jacket		0	3
A	Isothermal CSTR model		0	4
	For a CSTR with perfectly mixed cooling jacket with temp Tj. The temperature			
	inside the reactor is T. U is overall heat transfer coefficient and A is area of heat			
<mark>Q</mark>	transfer. What is the model equation to find heat transfer rate	M		
A	$Q=UA(T_j-T)$		0	
A	$Q=UA(T-T_j)$		1	
A	$Q=UA(T+T_j)$		0	
A	Q=UA/(T-T _j		0	
Q	According to phase rule, Degree of freedom analysis is done by	M		
A	F = C - P		0	
A	$\mathbf{F} = \mathbf{C} - \mathbf{P} + 1$		0	
A	$\mathbf{F} = \mathbf{C} - \mathbf{P} + 2$		1	
A	$\mathbf{F} = \mathbf{P} - \mathbf{C} + 1$		0	
Q	For "n" component flash operation Degree of freedom is	M		
A	0		0	
A	1		0	
A	2		1	
A	3		0	
Q	Recovery of a component in multi-component flash is defined as a ratio of:	M		
A	Amount of component in Liquid phase to that in Gas phase		0	
A	Amount of component in Gas phase to that in Feed		1	
A	Amount of component in Gas phase to that in Liquid phase		0	

A	Amount of component in Liquid phase to that in Feed		0	
<mark>Q</mark>	For multi-component flash system, ratio of relative volatility to average relative	M		
A	$\mathbf{P_k}^0 / \mathbf{P}$		1	
A	$\mathbf{P_n}^0 / \mathbf{P}$		0	
A	$\mathbf{P} / \mathbf{P}_k^0$		o	
A	P_{k}^{0} / P_{n}^{0}		o	
	For a system of isothermal CSTR in series having a compressible fluid and constant			
<mark>Q</mark>	hold-up, which of the following variable is not a function of time	M		
A	Flow-rate		0	
A	Volume of tank		1	
A	Concentration		0	
A	Density		0	
	For a system of isothermal CSTR in series with constant hold-up having a reaction,			
<mark>Q</mark>	which of the following is not a forcing function:	M		
A	Concentration of un-reacted A leaving first tank		1	
A	Feed flow rate		0	
A	Concentration of reactant A in the feed		0	
A	Concentration of B in the feed		0	
	In comparison to 3 isothermal CSTR in series with constant holdup, which			
Q	fundamental equation is needed to solve a system of 3 isothermal CSTR in series with	M		
A	Energy equation		0	
A	Component continuity equation		0	
A	Equation of state		0	
A	Continuity equation		1	
<mark>Q</mark>	Which equation is used to solve multi-component flash systems?	M		
A	Ergun's Equation		0	
A	Bernoulli's Equation		0	
A	Rashford-Rice Equation		1	
A	Gibbs-Duhem Equation		0	
Q	For a mathematical model consisting of five equations to be solved there should be	M		

A	Parameters		0	
A	Forcing functions		0	
A	Independent variables		0	
A	Dependent variables		1	
Q	In thermal equilibrium model for LPG vaporizer	M		
A	Vapour and liquid temperatures are equal		1	
A	Vapour temperature is higher than liquid temperature		0	
A	Liquid temperature is higher than vapour temperature		0	
A	The temperature is always below -100 [°] C		0	
Q	In models where mass transfer effects have to be considered, the units of mass	M		
A	Area per time		0	
A	Length per time		1	
A	Volume per time		0	
A	Velocity per time		0	
Q	. In problem of heat exchanger, size and configuration is known but heat	M		
A	design		0	
A	synthesis		0	
A	rating		1	
A	construction		0	
Q	In problem of heat exchanger, heat duty is known but area is unknown.	M		
A	design		1	
A	synthesis		0	
A	rating		0	
A	construction		0	
Q	In stream tearing if row k dominates row 1 then :	M		1
A	Add row 1		0	1
A	Add row k		0	2

A	Delete row l		0	3
A	Delete row k		1	4
Q	In stream tearing if column k dominates column j then :	M		1
A	Delete column j		1	1
A	Delete column k		0	2
A	Add column j		0	3
A	Add column k		0	4
<mark>Q</mark>	In flowsheet partitioning, groups of units which must be solved together are called	M		1
A	reducible		0	1
A	irreducible		1	2
A	irrelevant		0	3
A	redundant		0	4
	In Sequential Modular approach of simulation, is required because of			
<mark>Q</mark>	loops of information created by recycle streams.	M		1
A	partitioning		0	1
A	precedence ordering		0	2
A	tearing		1	3
A	mixing		0	4
	In Equation-Oriented approach of simulation, for the set of unknown			
<mark>Q</mark>	variables is very important.	M		1
A	initialization		1	1
A	normalization		0	2
A	minimization		0	3
A	maximization		0	4
	Precedence ordering is used to partition the set of equations into a sequence of			
<mark>Q</mark>	smaller sets of equations	M		1
A	reducible		0	1
A	redundant		0	2
A	irrelevant		0	3
A	irreducible		1	4
Q	represents some aspects of the real world by numbers or symbols.	M		1

A	Process simulation	1	1
A	Process control	0	2
A	Optimization	0	3
A	Process intensification	0	4
Q	Which algorithm is used to find the partitions and precedence ordering in a flow	M	1
A	Newton method algorithm	0	1
A	Armijo line search	0	2
A	Sargent and Westerberg algorithm	1	3
A	Broyden method algorithm	0	4
Q	BTA method is used for :	M	1
A	Determination of partitions in flow sheets	0	1
A	Determination of tear streams in flow sheets	1	2
A	Determination of modules in flow sheets	0	3
A	Determination of precedence ordering in flow sheets	0	4
Q	In Equation-Oriented approach of simulation storage requirement is :	M	1
A	Very low	0	1
A	Low	0	2
A	Zero	0	3
A	High	1	. 4
	The identification of recycle loops and methodical separation of the flowsheet into		
Q	groups of process units required to be solved collectively is known as	M	1
A	Partitioning	1	1
A	Tearing	0	2
A	Topology	0	3
A	Ordering	0	4
<mark>Q</mark>	is the first step for solving the material balance of a flow sheet.	M	1
A	Recycling	0	1
A	Tearing	0	2
A	Partitioning	1	. 3
A	Precedence ordering	0	4

	In direct substitution method, the necessary and sufficient condition for convergence			
Q	is that the maximum eigen value should be :	M		1
A	Greater than 1		0	1
A	Less than 1		1	2
A	Less than 0		0	3
A	Equal to 1		0	4
Q	Wegstein method is used for :	M		1
A	Numerical integration		0	1
A	Solution of linear algebraic equations		0	2
A	Solution of non-linear algebraic equations		1	3
A	Solution of ordinary differential equations		0	4
Q	The steepest descent method has a rate of convergence :	M		1
A	linear		1	1
A	quadratic		0	2
A	cubic		0	3
A	logarithmic		0	4
Q	In Levenberg-Marquardt method if $\lambda = 0$ then the method reduces to the:	M		1
A	Secant method		0	1
A	Steepest descent method		0	2
A	Direct substitution method		0	3
A	Newton's method		1	4
Q	The search direction p^k in Newton's method is given by the equation :	M		1
A	$\mathbf{p}^{\mathbf{k}} = -(\mathbf{J}^{\mathbf{k}})^{-1}\mathbf{f}(\mathbf{x}^{\mathbf{k}})$		1	1
A	$\mathbf{p}^{\mathbf{k}} = + (\mathbf{J}^{\mathbf{k}})^{-1} \mathbf{f}(\mathbf{x}^{\mathbf{k}})$		0	2
A	$\mathbf{p}^{\mathbf{k}} = -(\mathbf{J}^{\mathbf{k}})^{\mathrm{T}} \mathbf{f}(\mathbf{x}^{\mathbf{k}})$		0	3
A	$\mathbf{p}^{k} = + (\mathbf{J}^{k})^{T} \mathbf{f}(\mathbf{x}^{k})$		0	4
	If the starting point is poor then which of the following is used with Newton's method			
Q	to solve nonlinear algebraic equations?	М		
A	Trapezoidal rule		0	
A	Cramer's rule		0	

A	Armijo line search	1	
A	Runge-Kutta method	0	
Q	Which of the following is not used to solve nonlinear algebraic equations?	М	
A	Secant method	0	
A	Bisection method	0	
A	Successive substitution method	0	
A	Cramer's rule	1	
Q	In direct substitution method the speed of convergence will be highest when the	М	
A	0.99	0	
A	0.5	0	
A	Close to zero	1	
A	0.75	0	
	In Levenberg-Marquardt method, the value of the parameter that adjusts the direction		
Q	and length of the step is :	М	
A	-0.25	0	
A	-0.5	0	
A	-1	0	
A	Non-negative	1	
Q	The search direction in Newton's method for solving nonlinear algebraic equations	М	
A	Hessian matrix	0	
A	Inverse of Hessian matrix	0	
A	Inverse of Jacobian matrix	1	
A	Transpose of Hessian matrix	0	
Q	In Newton's method for solving non-linear algebraic equations the rate of	М	
A	Linear	0	
A	Very Slow	0	
A	Slow	0	
A	Fast (Quadratic)	1	
Q	Which of the following statements is true for Secant method?	М	
A	It has quadratic rate of convergence	0	
A	It can be used to solve nonlinear algebraic equations	1	

Δ	It cannot be used to solve nonlinear algebraic equations		0	
Δ	It is used for numerical integration		0	
Q	Which method for solving nonlinear algebraic equations requires calculation of	м		
A	Direct substitution method		0	
A	Secant method		0	
A	Bisection method		0	
A	Newton's method		1	
Q	Which of the following is NOT required for using Newton's method for	M		
Q ^	Which of the following is NOT required for using Newton's method for The lower bound for search region.		1	
	Twice differentiable optimization function.			
A	The function to be optimized.		0	
A	A good initial estimate that is reasonably close to the optimal.		0	
Q	Which of the following statements is INCORRECT?	М		
A	if the second derivative at x_i is negative, then x_i is a maximum.		0	
A	If the first derivative at x_i is zero, then x_i is an optimum.		0	
A	If x_i is a minimum, then the second derivative at x_i is positive		1	
A	The value of the function can be positive or negative as any optima.		0	
Q	For what value of x, is the function $x^2 - 2x - 6$ minimized?	M		
A	0		0	
A	1		1	
A	5		0	
A	3		0	
<mark>Q</mark>	The Newton Raphson Method fails when?	M		
A	Jacobian is singular		1	
A	Derivative is finite		0	
A	Jacobian is finite		0	
A	Jacobian is skew symmetric		0	
Q	The maxima can be located by using the condition?	M		

A	Second derivative positive	0	
A	First derivative negative	0	
A	Second Derivative negative	1	
A	First Derivative equals second derivative	0	
Q	The first order Kuhn Tucker should follow these necessary conditions for optimality?	м	
A	First derivative of Langarange polynomial should be zero	1	
A	First derivative of Langarange polynomial should be positive	0	
A	First derivative should be negative infinite	0	
A	First derivative should not exist	0	
Q	The first order Kuhn Tucker should follow these necessary conditions for optimality?	м	
A	The constraint multipliers should not be negative	1	
A	The constraint multipliers square should be positive	0	
A	The constraint multipliers should have negative finite value	0	
A	The constraint multipliers not depends on function	0	
Q	The Newton's method is convergence in what order?	М	
A	Quadratic	1	
A	Linearly	0	
A	Exponential	0	
A	Half	0	
<mark>Q</mark>	In Quasi Newton Method the double derivative of the function is approximated by?	М	
A	Slope using first order derivative.	1	
A	Hessian matrix	0	
A	Jacobi Matrix	0	
A	Finite difference	0	
<mark>Q</mark>	In which method the search for optimal solution is located with help of vertices of	М	
A	Simplex Method	1	
A	Conjugate Search Method	0	
A	Newton Method	0	
A	Quasi Newton Method	0	
<mark>Q</mark>	Cubic Interpolation method comes under which method?	М	
A	Polynomial Approximation method	1	

A	Gradient Search Method	0
A	Random Search	0
A	Quasi Search	0
<mark>Q</mark>	The feasible region for the inequality constraints with respect to equality	M
A	Increases	1
A	Decreases	0
A	Does not change	0
A	Slightly changes	0
Q	The degree of freedom for an optimization problem that has four design variables is,	M
A	9	0
A	4	1
A	16	0
A	2	0
<mark>Q</mark>	While solving a linear graphically the area bounded by the constraints is called	M
A	Feasible region	1
A	Infeasible region	0
A	Unbounded solution	0
A	Bounded Solution	0
<mark>Q</mark>	If $f(x)$ is continuous at every point in region R then $f(x)$ is said to be	M
A	Continuous	1
A	Discontinuous	0
A	Optimum	0
A	Continuously integrable	0
<mark>Q</mark>	Which of the following functions first derivatives are continuous at the break point	M
A	Continuous	0
A	Discontinuous	0
A	Splines	1
A	Discrete	0
Q	If feasible region F is empty then the problem is	M
A	Infeasible	1
A	Feasible	0

A	Bounded		0
A	Unbounded		0
Q	In Newtons method if $f''(x) \ge 0$ then method converges	М	
A	Slowly		1
A	Faster		0
A	Moderately		0
A	fails		0
	The negative gradient of $f(x)$ is the direction that maximizes the rate of change of $f(x)$		
<mark>Q </mark>	in moving towards the	М	
A	Minimum		1
A	Maximum		0
A	Zero		0
A	Local maximum		0
<mark>Q</mark>	Which of the following methods is used for optimization?	М	
A	Armijo Line Search		0
A	Gradient Method		1
A	Cramer's Rule		0
A	Direct Substitution Method		0
	Optimization problems that have nonlinear objective and/or constraint functions of		
Q	the problem variables are referred to as :	М	
A	Nonlinear programs		1
A	Linear programs		0
A	Kuhn Tucker conditions		0
A	Lagrange multipliers		0
Q	In nonlinear programming problem, the constraints create a region for the variables x	М	
A	Invalid region		0
A	Forbidden region		0
A	Feasible region		1
A	Boundary region		0