Q	Empirical Models can be used for?	M		1
A	System which are simple		0	1
A	System which is understood		0	2
A	System which are highly complex		1	3
A	System have one independent variable		0	4
Q	Theoretical Modelling is based on?	M		1
A	Chemistry \& Physics of Process		1	1
A	Experiments data		0	2
A	Rigorous data		0	3
A	Simulation		0	4
Q	Empirical Modelling is basically derived using?	M		1
A	Conservation Equations		0	1
A	Experimental data		1	2
A	Chemistry \& Physics of Process		0	3
A	Simulation		0	4
Q	For Complex model which modelling technique is not mostly preferred?	M		1
A	Empirical Modelling		0	1
A	Theoretical Modelling		1	2
A	Variable Modelling		0	3
A	Parameter Modelling		0	4
Q	Parameter estimation on model development using regression is based on?	M		1
A	Maximisation of difference between model predictions and data.		0	1
A	Model predictions are varying exponential as data calculated.		0	2
A	Minimisation of difference between model predictions and data.		1	3
A	Model predictions are square of the data.		0	4
Q	Equation of motion is	M		1
A	Conservation of mass		0	1
A	Conservation of energy		0	2
A	Conservation of momentum		1	3

A	Component continuity equation		0	4
Q	The model equation describe chemical kinetics	M		1
A	Law of mass action		1	1
A	Raoult's law		0	2
A	Daltons's law		0	3
A	Phase equilibrium relations		0	4
Q	Which model follows the changes over time that results from the system activities	M		1
A	Dynamic model		1	1
A	Static model		0	2
A	Analytical model		0	3
A	Numerical model		0	4
Q	Mathematical models are based on	M		1
A	Analogy between such systems are mechanical and electrical		0	1
A	Mathematical equations to represent the system		1	2
A	Analysis		0	3
A	Numerical methods		0	4
Q	Which model based on physical and chemical laws, thermodynamics, chemical reaction, kinetics are frequently employed in optimization application	M		1
A	Process model		0	1
A	Mathematical model		1	2
A	Empirical model		0	3
A	Linear model		0	4
Q	Which model can be devised to correlate input output data without any physiochemical analysis of the process	M		1
A	Linear model		0	1
A	Process model		0	2
A	Mathematical model		0	3
A	Empirical model		1	4
Q	Which type of mathematical model takes into account detailed variations in behavior from point to point throughout the system?	M		1
A	Distributed parameter model		1	1

A	No of equations=no of unknown variables		1	1
A	No of equations < no of unknown variables		0	2
A	No of equations > no of unknown variables		0	3
A	No of equations < no of all variable present		0	4
Q	For a CSTR with cooling jacket, the model used with breakup of the jacket volume into number of perfectly mixed lumps is	M		1
A	Plug flow cooling jacket		0	1
A	Lumped jacket model		1	2
A	Perfectly mixed cooling jacket		0	3
A	Isothermal CSTR model		0	4
	For a CSTR with perfectly mixed cooling jacket with temp Tj. The temperature inside the reactor is T . U is overall heat transfer coefficient and A is area of heat			
Q	transfer. What is the model equation to find heat transfer rate	M		
A	$\mathrm{Q}=\mathrm{UA}\left(\mathrm{T}_{\mathrm{j}}-\mathrm{T}\right)$		0	
A	$\mathrm{Q}=\mathrm{UA}\left(\mathrm{T}-\mathrm{T}_{\mathrm{j}}\right)$		1	
A	$\mathrm{Q}=\mathrm{UA}\left(\mathrm{T}+\mathrm{T}_{\mathrm{j}}\right)$		0	
A	$\mathrm{Q}=\mathrm{UA} /\left(\mathrm{T}-\mathrm{T}_{\mathrm{j}}\right.$		0	
Q	According to phase rule, Degree of freedom analysis is done by	M		
A	$\mathrm{F}=\mathrm{C}-\mathrm{P}$		0	
A	$\mathrm{F}=\mathrm{C}-\mathrm{P}+1$		0	
A	$\mathrm{F}=\mathrm{C}-\mathrm{P}+2$		1	
A	$\mathrm{F}=\mathrm{P}-\mathrm{C}+1$		0	
Q	For " n " component flash operation Degree of freedom is	M		
A	0		0	
A	1		0	
A	2		1	
A	3		0	
Q	Recovery of a component in multi-component flash is defined as a ratio of:	M		
A	Amount of component in Liquid phase to that in Gas phase		0	
A	Amount of component in Gas phase to that in Feed		1	
A	Amount of component in Gas phase to that in Liquid phase		0	

A	Delete row 1		0	3
A	Delete row k		1	4
Q	In stream tearing if column k dominates column j then :	M		1
A	Delete column j		1	1
A	Delete column k		0	2
A	Add column j		0	3
A	Add column k		0	4
Q	In flowsheet partitioning, groups of units which must be solved together are called	M		1
A	reducible		0	1
A	irreducible		1	2
A	irrelevant		0	3
A	redundant		0	4
	In Sequential Modular approach of simulation, ____ is required because of			
Q	loops of information created by recycle streams.	M		1
A	partitioning		0	1
A	precedence ordering		0	2
A	tearing		1	3
A	mixing		0	4
	In Equation-Oriented approach of simulation, ___ for the set of unknown			
Q	variables is very important.	M		1
A	initialization		1	1
A	normalization		0	2
A	minimization		0	3
A	maximization		0	4
	Precedence ordering is used to partition the set of equations into a sequence of			
Q	smaller sets of ___ equations	M		1
A	reducible		0	1
A	redundant		0	2
A	irrelevant		0	3
A	irreducible		1	4
Q	\ldots represents some aspects of the real world by numbers or symbols.	M		1

A	Process simulation		1	1
A	Process control		0	2
A	Optimization		0	3
A	Process intensification		0	4
Q	Which algorithm is used to find the partitions and precedence ordering in a flow	M		1
A	Newton method algorithm		0	1
A	Armijo line search		0	2
A	Sargent and Westerberg algorithm		1	3
A	Broyden method algorithm		0	4
Q	BTA method is used for :	M		1
A	Determination of partitions in flow sheets		0	1
A	Determination of tear streams in flow sheets		1	2
A	Determination of modules in flow sheets		0	3
A	Determination of precedence ordering in flow sheets		0	4
Q	In Equation-Oriented approach of simulation storage requirement is :	M		1
A	Very low		0	1
A	Low		0	2
A	Zero		0	3
A	High		1	4
Q	The identification of recycle loops and methodical separation of the flowsheet into groups of process units required to be solved collectively is known as	M		1
A	Partitioning		1	1
A	Tearing		0	2
A	Topology		0	3
A	Ordering		0	4
Q	$\ldots \ldots$ is the first step for solving the material balance of a flow sheet.	M		1
A	Recycling		0	1
A	Tearing		0	2
A	Partitioning		1	3
A	Precedence ordering		0	4

In direct substitution method, the necessary and sufficient condition for convergence

Q
A
A
A
A Equal to 1
A
A Solution of linear algebraic equations
A Solution of non-linear algebraic equations
A Solution of ordinary differential equations
Q The steepest descent method has a \qquad rate of convergence :
A
A
A
A logarithmic
Q
A
A Steepest descent method
A Direct substitution method
A Newton's method
Q
A
A
A
A

Q
A
A

The search direction p^{k} in Newton's method is given by the equation :

$$
\mathrm{p}^{\mathrm{k}}=-\left(\mathrm{J}^{\mathrm{k}}\right)^{-1} \mathrm{f}\left(\mathrm{x}^{\mathrm{k}}\right)
$$

$$
\mathrm{p}^{\mathrm{k}}=+\left(\mathrm{J}^{\mathrm{k}}\right)^{-1} \mathrm{f}\left(\mathrm{x}^{\mathrm{k}}\right)
$$

$$
\mathrm{p}^{\mathrm{k}}=-\left(\mathrm{J}^{\mathrm{k}}\right)^{\mathrm{T}} \mathrm{f}\left(\mathrm{x}^{\mathrm{k}}\right)
$$ $p^{k}=+\left(J^{k}\right)^{T} f\left(x^{k}\right)$

If the starting point is poor then which of the following is used with Newton's method to solve nonlinear algebraic equations?
Trapezoidal rule In Levenberg-Marquardt method if $\lambda=0$ then the method reduces to the: Secant method

Cramer's rule

A	Armijo line search		1
A	Runge-Kutta method		0
Q	Which of the following is not used to solve nonlinear algebraic equations?	M	
A	Secant method		0
A	Bisection method		0
A	Successive substitution method		0
A	Cramer's rule		1
Q	In direct substitution method the speed of convergence will be highest when the	M	
A	0.99		0
A	0.5		0
A	Close to zero		1
A	0.75		0
Q	In Levenberg-Marquardt method, the value of the parameter that adjusts the direction and length of the step is :	M	
A	-0.25		0
A	-0.5		0
A	-1		0
A	Non-negative		1
Q	The search direction in Newton's method for solving nonlinear algebraic equations	M	
A	Hessian matrix		0
A	Inverse of Hessian matrix		0
A	Inverse of Jacobian matrix		1
A	Transpose of Hessian matrix		0
Q	In Newton's method for solving non-linear algebraic equations the rate of	M	
A	Linear		0
A	Very Slow		0
A	Slow		0
A	Fast (Quadratic)		1
Q	Which of the following statements is true for Secant method?	M	
A	It has quadratic rate of convergence		0
A	It can be used to solve nonlinear algebraic equations		1

A	It cannot be used to solve nonlinear algebraic equations		0
A	It is used for numerical integration		0
Q	Which method for solving nonlinear algebraic equations requires calculation of	M	
A	Direct substitution method		0
A	Secant method		0
A	Bisection method		0
A	Newton's method		1
Q	Which of the following is NOT required for using Newton's method for	M	
A	The lower bound for search region.		1
A	Twice differentiable optimization function.		0
A	The function to be optimized.		0
A	A good initial estimate that is reasonably close to the optimal.		0
Q	Which of the following statements is INCORRECT?	M	
A	if the second derivative at x_{i} is negative, then x_{i} is a maximum.		0
A	If the first derivative at x_{i} is zero, then x_{i} is an optimum.		0
A	If x_{i} is a minimum, then the second derivative at x_{i} is positive		1
A	The value of the function can be positive or negative as any optima.		0
Q	For what value of x, is the function $x^{2}-2 x-6$ minimized?	M	
A	0		0
A	1		1
A	5		0
A	3		0
Q	The Newton Raphson Method fails when?	M	
A	Jacobian is singular		1
A	Derivative is finite		0
A	Jacobian is finite		0
A	Jacobian is skew symmetric		0
Q	The maxima can be located by using the condition?	M	

A	Second derivative positive		0
A	First derivative negative		0
A	Second Derivative negative		1
A	First Derivative equals second derivative		0
Q	The first order Kuhn Tucker should follow these necessary conditions for optimality?	M	
A	First derivative of Langarange polynomial should be zero		1
A	First derivative of Langarange polynomial should be positive		0
A	First derivative should be negative infinite		0
A	First derivative should not exist		0
Q	The first order Kuhn Tucker should follow these necessary conditions for optimality?	M	
A	The constraint multipliers should not be negative		1
A	The constraint multipliers square should be positive		0
A	The constraint multipliers should have negative finite value		0
A	The constraint multipliers not depends on function		0
Q	The Newton's method is convergence in what order?	M	
A	Quadratic		1
A	Linearly		0
A	Exponential		0
A	Half		0
Q	In Quasi Newton Method the double derivative of the function is approximated by?	M	
A	Slope using first order derivative.		1
A	Hessian matrix		0
A	Jacobi Matrix		0
A	Finite difference		0
Q	In which method the search for optimal solution is located with help of vertices of	M	
A	Simplex Method		1
A	Conjugate Search Method		0
A	Newton Method		0
A	Quasi Newton Method		0
Q	Cubic Interpolation method comes under which method?	M	
A	Polynomial Approximation method		1

A	Gradient Search Method		0
A	Random Search		0
A	Quasi Search		0
Q	The feasible region for the inequality constraints with respect to equality	M	
A	Increases		1
A	Decreases		0
A	Does not change		0
A	Slightly changes		0
Q	The degree of freedom for an optimization problem that has four design variables is,	M	
A	9		0
A	4		1
A	16		0
A	2		0
Q	While solving a linear graphically the area bounded by the constraints is called	M	
A	Feasible region		1
A	Infeasible region		0
A	Unbounded solution		0
A	Bounded Solution		0
Q	If $f(x)$ is continuous at every point in region R then $f(x)$ is said to be ---------	M	
A	Continuous		1
A	Discontinuous		0
A	Optimum		0
A	Continuously integrable		0
Q	Which of the following functions first derivatives are continuous at the break point	M	
A	Continuous		0
A	Discontinuous		0
A	Splines		1
A	Discrete		0
Q	If feasible region F is empty then the problem is	M	
A	Infeasible		1
A	Feasible		0

A	Bounded		0
A	Unbounded		0
Q	In Newtons method if f^{\prime} ' (x) à 0 then method converges-------	M	
A	Slowly		1
A	Faster		0
A	Moderately		0
A	fails		0
	The negative gradient of $f(x)$ is the direction that maximizes the rate of change of $f(x)$		
Q	in moving towards the -----.	M	
A	Minimum		1
A	Maximum		0
A	Zero		0
A	Local maximum		0
Q	Which of the following methods is used for optimization?	M	
A	Armijo Line Search		0
A	Gradient Method		1
A	Cramer's Rule		0
A	Direct Substitution Method		0
	Optimization problems that have nonlinear objective and/or constraint functions of		
Q	the problem variables are referred to as :	M	
A	Nonlinear programs		1
A	Linear programs		0
A	Kuhn Tucker conditions		0
A	Lagrange multipliers		0
Q	In nonlinear programming problem, the constraints create a region for the variables x	M	
A	Invalid region		0
A	Forbidden region		0
A	Feasible region		1
A	Boundary region		0

