University of Mumbai

Examination 2020 under cluster 4 (PCE)
Program: BE Computer Engineering
Curriculum Scheme: Rev 2016
Examination: Final Year Semester VII
Course Code: CSC701 and Course Name: Digital Signal and Image Processing
Time: 1 hour

Q NO	QUESTION	OPTIONS				Correct Answer
		A	B	C	D	
1	Time shifting of discrete time signal means	$\mathrm{y}[\mathrm{n}]=\mathrm{x}[-\mathrm{n}-\mathrm{k}]$	$\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}-\mathrm{k}]$	$\mathrm{y}[\mathrm{n}]=-\mathrm{x}[\mathrm{n}-\mathrm{k}]$	$\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}+\mathrm{k}]$	B
2	Correlation between two signals $x(n)$ and $y(n)$ is called	Cross Correlation	Both cross and Auto Correlation	Auto Correlation	$\begin{aligned} & \text { Neither cross } \\ & \text { nor auto } \\ & \text { Correlation } \end{aligned}$	A
3	Determine the linear convolution of $\mathrm{x}(\mathrm{n})=\{3,7\}$ and $\mathrm{h}(\mathrm{n})=\{2,5,4\}$	$\begin{gathered} \mathrm{y}(\mathrm{n})=\{6,29,47, \\ 25\} \end{gathered}$	$\begin{gathered} \mathrm{y}(\mathrm{n})=\{6,29,47, \\ 28\} \end{gathered}$	$\begin{gathered} \mathrm{y}(\mathrm{n})=\{6,25,47, \\ 28\} \end{gathered}$	$\begin{gathered} y(n)=\{6,29,37, \\ 28\} \end{gathered}$	B
4	The system described by the input-output equation $\mathrm{y}(\mathrm{n})=4 \mathrm{x}(\mathrm{n})$ is a	Dynamic system	Static system	Both static and Dynamic system	Identical system	B
5	The interface between an analog signal and a digital processor is	A/D converter	D/A converter	Modulator	Demodulator	A
6	The 2-point DFT of $\mathrm{x}(\mathrm{n})=\{1,1\}$ is	\{2,0\}	\{1,0\}	\{2,2\}	\{0,1\}	A
7	In 4-point DFT,Value of twiddle factor repeats after	$\mathrm{kn}=3$	$\mathrm{kn}=4$	$\mathrm{kn}=2$	$\mathrm{kn}=5$	A
8	Periodicity property for DFT statement is	$\mathrm{x}(\mathrm{n})=\mathrm{x}(\mathrm{n}+\mathrm{N})$	$\mathrm{x}(\mathrm{n})=\mathrm{x}(\mathrm{N})$	$\mathrm{x}(\mathrm{n})=\mathrm{x}(\mathrm{n}-\mathrm{N})$	$\mathrm{x}(\mathrm{n})=\mathrm{x}(-\mathrm{n}+\mathrm{N})$	A

9	If X1(k) and X2(k) are the N -point DFTs of $\mathrm{X} 1(\mathrm{n})$ and $\mathrm{x} 2(\mathrm{n})$ respectively, then what is the N point DFT of $x(n)=a x 1(n)+b x 2(n)$?	$\mathrm{X} 1(\mathrm{ak})+\mathrm{X} 2(\mathrm{bk}$	$\mathrm{aX} 1(\mathrm{k})+\mathrm{bX} 2(\mathrm{k}$	$\begin{aligned} & \text { eakX1(k)+ebk } \\ & \mathrm{X} 2(\mathrm{k}) \end{aligned}$	aX1(k)-bX2(k)	B
10	For radix -2 FFT, N must be a power of	N	4	2	N/2	C
11	In DIT-FFT	Input is decimented in time	Output is decimented in time	Input is decimented in frequency	Output is decimented in frequency	A
12	Using radix 2, what is IFFT of $\mathrm{X}(\mathrm{k})=\{3,1\}$	\{4, -2 \}	$\{2,1\}$	$\{4,2\}$	\{1, 2\}	B
13	Fast Fourier Transform (FFT) algorithm uses	Dynamic approach	Divide \& conquer approach	Brute force approach	Greedy approach	B
14	Two pixels p and q are said to be \qquad if $i) q$ is in $\mathrm{N} 4(\mathrm{p})$ or ii) q is in $\mathrm{ND}(\mathrm{p})$ and the set $\mathrm{N} 4(\mathrm{p})$ $\cap \mathrm{N} 4(\mathrm{q})$ has no pixels	4-connected	8-connected	M-connected	diagonally connected	C
15	\qquad is the total amount of energy that flows from light source.	Radiance	Darkness	Brightness	Luminance	A
16	1024×1024 image has resolution of ----	1048576	1148576	1248576	1348576	A
17	The range of values spanned by the gray scale is called	Dynamic range	Band range	Peak range	Resolution range	A
18	In Power law transform defined by transfer function, $\mathrm{S}=\mathrm{C}(\gamma) \gamma$ where $\mathrm{C}=$ constant, when γ >1 then,	wide range of dark pixel intensities transformed into narrow range	narrow range of dark pixel intensities transformed into wide range	Identity transformation	Gyama correction	A
19	The missing component on circuit board can be detected by compairing it's image with image of a properly assembled circuit board. This is application of -	Contrast strtching	Image addition	Image subtraction	Histogram equallisation	C

20	The function of \qquad is to remove unwanted noise from the image while preserving all the details of original image.	Gray level slicing	Image histogram	Image segmentation	Smoothing filters	D
21	In \qquad filtering, the input pixel is replaced by median of pixels contained in a window around that pixel.	Averaging	Median	High pass	Low pass	B
22	Image segmentation is also based on	morphology	set theory	extraction	Recognition	A
23	Image whose principle features are edges is called	orthogonal	isolated	edge map	edge normal	C
24	Vertical lines are angles at	0	45	90	135	C
25	Mask's response to zero means	sum to zero	subtraction to zero	division to zero	multiplication to zero	A

