University of Mumbai Examination 2020 under cluster 4 (PCE)

Program: BE Mechanical Engineering Curriculum Scheme: Rev2016

Examination: Fourth Year Semester VII

Course Code: MEC701 Course Name: Machine Design II

Time: 1 hour Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	In ball bearing the balls, the balls are held at proper distance by:		
Option A:	Races		
Option B:	Retainers		
Option C:	Casings		
Option D:	Housing		
1	5		
Q2.	If Z is Number of teeth and D is Pitch circle diameter then the Module is		
Option A:	m=Z/D		
Option B:	m=DZ		
Option C:	m=D/Z		
Option D:	$m=(\pi D)/Z$		
Q3.	Minimum distance between Journal and Bearing is		
Option A:	Diametral Clearance		
Option B:	Radial Clearance		
Option C:	Eccentricity Factor		
Option D:	Minimum Oil Film thickness		
Q4.	In case of a multiple disc clutch, if n1 are the number of discs on the driving shaft and n2 are the number of the discs on the driven shaft, then the number of pairs of contact surfaces will be		
Option A:	$n_1 + n_2$		
Option B:	$n_1 + n_2 - 1$		
Option C:	$n_1 + n_2 + 1$		
Option D:	$n_1 + n_2$		
Q5.	The particular application the radial load acting on a ball bearing is 5 kN and the life of the ball bearing is 696 million rev. The Dynamic load carrying capacity of the bearing would be		
Option A:	54311 N		
Option B:	44311 N		
Option C:	34311 N		
Option D:	24311 N		
Q6.	A chain can be defined as a series of links connected by		
Option A:	Pin joints		
Option B:	Riveted joints		
Option C:	Ball joints		
Option D:	Bolted joints		

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Q7.	The mass moment of inertia for a solid disc flywheel (m-mass in kg and R=		
Q7.	Radius in m) is given by		
Option A:	$m R^2/2$		
Option B:	$\begin{array}{c} \text{III } \text{K} / 2 \\ \text{m } \text{R}^2 / 3 \end{array}$		
Option C:	$m R^2/4$		
Option C:	$\begin{array}{c c} m R / 4 \\ 3m R^2 / 4 \end{array}$		
Option D.	SIII K /4		
00	In course of module is 5mm and no of teeth on minion and coor one 10 and 54		
Q8.	In spur gear, if module is 5mm and no of teeth on pinion and gear are 18 and 54 find the centre distance 'a'		
Ontion A:			
Option A:	180 mm		
Option B:	360 mm		
Option C:	90 mm		
Option D:	160 mm		
00	Crowning of a flat halt mulley is done to		
Q9.	Crowning of a flat belt pulley is done to		
Option A:	Prevent the slipping of a belt		
Option B:	To increase the tension of a belt		
Option C:	To increase the angle of contact		
Option D:	To decrease the slip		
010			
Q10.	What is meant by jump phenomenon in cam and follower system?		
Option A:	Follower loses contact with cam surface when cam rotates beyond particular		
O : D	speed due to inertia forces		
Option B:	Follower loses contact with cam surface when follower rotates beyond particular		
0 1: 0	speed due to gravitational force		
Option C:	Follower loses contact with cam surface when cam rotates beyond particular		
Ontion D.	speed due to torsional forces		
Option D:	Follower loses contact with cam surface when cam rotates beyond particular		
	speed due to bending forces		
011	If $(\sigma b \times Y)$ for pinion $> (\sigma b \times Y)$ for gear then is designed for bending.		
Q11. Option A:	Pinion Pinion Go x 1 Ioi gear then is designed for bending.		
Option B:	Gear		
Option C:	Both Pinion and Gear		
Option D:	Needs more data to decide		
012	In journal bassing Ag/(DCn'I) is		
Q12.	In journal bearing, 4q/(DCn'L) is Pressure Ratio		
Option A:			
Option B:	Flow Ratio		
Option C:	Flow variable		
Option D:	Coefficient of friction Variable		
012			
Q13.	If Radial load acting on journal bearing is 16 kN and allowable bearing pressure		
	as 1.5 N/ mm ² . Assuming L/D=1, the diameter of the bearing would be		
Option A:	113.72 mm		
Option B:	103.27 mm		
Option C:	80 mm		
Option D:	88 mm		

University of Mumbai Examination 2020 under cluster 4 (PCE)

014			
Q14.	The Lewis form factor of a spur gear depends on		
Option A:	Circular pitch only		
Option B:	Pressure angle only		
Option C:	Number of teeth and the circular pitch		
Option D:	Number of teeth and system of teeth		
Q15.	The included angle for V belt is		
Option A:	20 to 30 degree		
Option B:	30 to 40 degree		
Option C:	40 to 50 degree		
Option D:	50 to 60 degree		
Q16.	When two identical bevel gears are mounted on shaft, that are intersecting at right		
	angles, they are called		
Option A:	Miter gear		
Option B:	Crown gear		
Option C:	Skew bevel gear		
Option D:	Internal bevel gear		
F			
Q17.	The clutch used in scooters is		
Option A:	multi-plate clutch		
Option B:	single plate clutch		
Option C:	centrifugal clutch		
Option C:	cone clutch		
Option D.	Cone ciutai		
Q18.	The heat generated in brake depends upon		
_ `			
Option A:	pv		
Option B:	p/v		
Option C:	pv^2		
Option D:	$pv^2/2$		
0.10			
Q19.	If 'b' denotes face width and R denotes cone distance, the bevel factor is written		
	as		
Option A:	1- b/R		
Option B:	1-2bR		
Option C:	b/(2R)		
Option D:	b/R		
Q20.	A cone clutch transmits 24 kW at 490 rpm. The coefficient of friction is 0.2 and		
	allowable intensity of pressure is 0.35N/mm ² . The semi cone angle is 12 ⁰ . The		
	outer diameter is fixed as 310mm. Assuming uniform wear theory; find the		
	maximum torque which is transmitted.		
Option A:	502.4 N-m		
Option B:	542.3 N-m		
Option C:	467.72 N-m		
Option D:	454.5 N-m		
. <u>F</u>			
	1		

University of Mumbai Examination 2020 under cluster 4 (PCE)

Which of the following equation is used to measure pressure angle between		
direction of follower motion and force exerted by the cam on follower when		
eccentricity is zero? Where, rb = base circle radius, y = displacement of follower		
$\cot \Phi = \left(\frac{dy}{d\theta}\right) / \left(\frac{rb + y}{d\theta}\right)$		
$\tan \Phi = \left(\frac{dy}{d\theta}\right) / (rb + y)$		
$\tan \Phi = (dy/d\theta) x (rb + y)$		
$\cot \Phi = (dy/d\theta) x (rb + y)$		
A 1.5 KW motor is running at 1440rpm. It is to be connected to a stirrer running		
at 36 rpm. The gearing arrangement suitable for this application is		
Spur		
Helical		
Worm		
Bevel		
A circle drawn with center as the cam center and radius equal to the distance		
between the cam center and the point on the pitch curve at which the pressure		
angle is maximum is called		
base circle		
pitch circle		
prime circle		
pressure angle		
The bearing number XX10 indicates that the bearing is having		
Bore diameter of 10 mm		
Bore diameter of 100 mm.		
Bore diameter of 50 mm.		
Outer diameter of 100 mm.		
In Spur gears, the circle on which the involute is generated is called as		
Pitch circle		
Clearance circle		
Base circle		
Addendum Circle		

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Program: BE Mechanical Engineering Curriculum Scheme: Rev2016

Examination: Fourth Year Semester VII

Course Code: MEC701 Course Name: Machine Design II

Time: 1 hour Max. Marks: 50

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	В
Q2.	C
Q3.	D
Q4	В
Q5	В
Q6	A
Q7	A
Q8.	A
Q9.	A
Q10.	A
Q11.	В
Q12.	С
Q13.	В
Q14.	D
Q15.	В
Q16.	A
Q17.	A
Q18.	A
Q19.	A
Q20.	С
Q21.	В
Q22.	С
Q23.	В
Q24.	С
Q25.	С