Program: BE Civil Engineering

Curriculum Scheme: Revised 2012

Examination: Fourth Year Semester: VII

Course Code: CEC701 Course Name: Limit State Method for Reinforced Concrete Structures

Time: 1 hour

Max. Marks: 50

Note to the students: All the Questions are compulsory and carry equal marks.

Q1.	In Ultimate Load Method (ULM), which stress block is used?	
Option A:	Triangular stress block	
Option B:	Whitney's rectangular stress block	
Option C:	Rectangular & parabolic stress block	
Option D:	Parabolic stress block	
Q2.	The depth of balanced neutral axis for a beam with Fe 415 steel bars, in limit	
	state method of design is ('d' is effective depth)	
Option A:	0.46d	
Option B:	0.48d	
Option C:	0.53d	
Option D:	0.55d	
Q3.	With usual notations, which of the following expressions is correct for the stress	
	block in Limit State Method?	
Option A:	0.44f _{ck} X _u	
Option B:	0.50f _{ck} X _u	
Option C:	0.36f _{ck} X _u	
Option D:	0.55f _{ck} X _u	
Q4.	The Young's modulus of concrete as per IS456:2000 is taken as	
Option A:	$4000 (f_{ck})^{1/2}$	
Option B:	4500 $(f_{ck})^{1/2}$	
Option C:	4700 $(f_{ck})^{1/2}$	
Option D:	5000 $(f_{ck})^{1/2}$	
Q5.	With usual notations, for the expression ($M_{ulim} = Q_{lim}bd^2$), Q_{lim} stands for	
Option A:	Limiting reinforcement factor	
Option B:	Limiting reinforcement index	
Option C:	Limiting moment of resistance factor	
Option D:	Limiting depth	
Q6.	If a balanced beam of effective depth 500 mm has Fe500 steel, the depth of	
	balanced neutral axis is	
Option A:	230 mm	
Ontion B.	250 mm	

Option C:	260 mm	
Option D:	270 mm	
Q7.	For a singly-reinforced beam, concrete grade is M30, width is 280 mm & depth	
	of neutral axis is 300 mm from top compression fibre. The total compressive	
	force above the neutral axis is	
Option A:	906200 N	
Option B:	906500 N	
Option C:	907200 N	
Option D:	908200 N	
Q8.	The minimum tension steel (Fe415) to be provided for a singly reinforced beam	
	with width 250 mm & effective depth 520 mm is	
Option A:	288.26 mm ²	
Option B:	266.26 mm ²	
Option C:	299.26 mm ²	
Option D:	200 mm ²	
Q9.	For a singly-reinforced beam, with usual notations, what is the depth of resultant	
	compressive force from the top compression fibre?	
Option A:	0.58X _u	
Option B:	0.42X _u	
Option C:	0.55X _u	
Option D:	0.40X _u	
Q10.	For a beam, width is 300 mm, effective depth is restricted to 500 mm, and grade	
	of concrete is M20 & steel grade is Fe415. Applied design bending moment is	
	207 kNm. It is to be designed as	
Option A:	Balanced Singly-reinforced beam	
Option B:	Doubly-reinforced beam	
Option C:	Plain concrete beam	
Option D:	Over-reinforced beam	
Q11.	For a T-beam, if depth of flange is greater than (0.43 X Neutral axis depth), the	
	stresses in the flange are	
Option A:	Uniform	
Option B:	Non-uniform	
Option C:	Zero	
Option D:	Very high	
Q12.	The shear strength of RCC beam depends on	
Option A:	Grade of steel	
Option B:	Depth of beam	
Option C:	Width of beam	
Option D:	Grade of concrete & tensile steel percentage	
1		

Q13.	Table 19 in IS456: 2000 (Limit State Method) is about	
Option A:	shear strength of concrete	
Option B:	bending moment coefficient	
Option C:	shear force coefficient	
Option D:	Torion	
Q14.	In case of bent-up bars, contribution of bent-up bars towards shear resistance	
	should	
Option A:	not be more than 30% of the total shear resistance	
Option B:	not be more than 40% of the total shear resistance	
Option C:	not be more than 50% of the total shear resistance	
Option D:	not be more than 60% of the total shear resistance	
Q15.	The length of steel bar beyond theoretical point of cut-off shall be	
Option A:	Anchorage length	
Option B:	Development Length	
Option C:	Bond length	
Option D:	Dowel length	
Q16.	A steel bar is bent in to an angle of 90 degrees. The anchorage value is	
Option A:	Zero	
Option B:	4 times its diameter	
Option C:	16 times its diameter	
Option D:	8 times its diameter	
Q17.	L-beams are subjected to which type of torsion?	
Option A:	Primary torsion	
Option B:	Secondary torsion	
Option C:	Only bending moment	
Option D:	Only bending moment and shear force	
Q18.	The slab designed as supported on all four sides is called as:	
Option A:	One-way slab	
Option B:	Two-way slab	
Option C:	Three-way slab	
Option D:	Four-way slab	
Q19.	The percentage of minimum reinforcement for Fe415 steel with respect to gross	
	C/S area in slab is	
Option A:	0.11%	
Option B:	0.12%	
Option C:	0.16%	
Option D:	0.17%	
Q20.	In design of simply supported slab, the slab depth can be obtained from	
	deflection criterion by using condition	

Option A:	(Longer span) / (20 X modification factor)	
Option B:	(Longer span) / (26X modification factor)	
Option C:	(Shorter span) / (26X modification factor)	
Option D:	(Shorter span) / (20X modification factor)	
Q21.	The strength of the column with helical reinforcement is what times the strength	
	of similar column with lateral ties?	
Option A:	1	
Option B:	1.05	
Option C:	3	
Option D:	1.5	
Q22.	As per Euler theory (theoretical), what is the effective length of a column with	
	both ends fixed?	
Option A:	0.6 L	
Option B:	0.5 L	
Option C:	2 L	
Option D:	L	
Q23.	As per IS 456:2000 what should be the minimum nominal cover to be provided	
	for footing at the bottom?	
Option A:	50 mm	
Option B:	40 mm	
Option C:	25 mm	
Option D:	60 mm	
Q24.	The critical section of finding maximum bending moment for footing is located	
Option A:	At the face of the column	
Option B:	At the Edge of the footing	
Option C:	At a distance of (d)from the face of the column	
Option D:	At a perimeter section at distance of (d/2) from the face of the column	
Q25.	A trapezoidal combined footing for two axially loaded columns, is provided when	
Option A:	Length of footing is not restricted.	
Option B:	When the heavily loaded column is near the property line.	
Option C:	When two columns lie very far from each other.	
Ontion D:	When the bearing capacity of soil is more.	

Program: BE Civil Engineering

Curriculum Scheme: Revised 2012

Examination: Fourth Year Semester: VII

Course Code: CEC701 Course Name: Limit State Method for Reinforced Concrete Structures

Time: **1 hour**

Max. Marks: 50

Answer Keys:

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	В
Q2.	В
Q3.	С
Q4	D
Q5	С
Q6	А
Q7	С
Q8.	В
Q9.	В
Q10.	А
Q11.	В
Q12.	D
Q13.	А
Q14.	С
Q15.	А
Q16.	D
Q17.	В
Q18.	В

Q19.	В
Q20.	D
Q21.	В
Q22.	В
Q23.	А
Q24.	А
Q25.	В