University of Mumbai Examination 2020 under cluster 4 (PCE)

Program: BE Computer Engineering Curriculum Scheme: R12

Examination: Final Year Semester VII Course Code: CPC701 and Course Name: DSP

Time: 1 hour Max. Marks: 50

		question_exp	question_typ	question_diffi
Q=QUESTION	question_description	lanation	e	culty
		answer_expla	answer_isrigh	answer_positi
A=ANSWER	answer_description	nation	t	on
Q	Time shifting of discrete time signal means		L	
A	y[n] = x[n-k]		1	
A	y[n] = x[-n-k]		0	
A	y[n] = -x[-n-k]		0	
A	y[n] = x[-n]		0	
0	Which property is exhibited by the auto-correlation function of a			
Q	complex valued signal?		L	
Α	Commutative property		0	
A	Distributive property		0	
A	Conjugate property		1	
A	Associative property		0	
0	Under which conditions does an initially relaxed system become			
Q	unstable?		L	
A	Only if bounded input generates unbounded output		0	
Α	Only if bounded input generates bounded output		1	
Α	Only if unbounded input generates unbounded output		0	
Α	Only if unbounded input generates bounded output		0	

	A LTI system is said to be initially relaxed system only if		
Q		М	
А	Zero input produces zero output	1	
Α	Zero input produces non-zero output	0	
А	Zero input produces an output equal to unity	0	
A	Zero input provide infinite output	0	
0	The function given by the equation x(n)=1, for n=0; x(n)=0, for		
α	n≠0 is a	М	
А	Step function	0	
А	Ramp function	0	
А	Triangular function	0	
А	Impulse function	1	
0	Which of the following should be done in order to convert a		
ч	continuous-time signal to a discrete-time signal?	Н	
А	Sampling	1	
А	Differentiating	0	
А	Integrating	0	
А	Convolution	0	
Q	A discrete time signal has	Н	
А	Continuous time continuous amplitude	0	
А	Continuous time discrete amplitude	0	
А	Discrete time continuous amplitude	0	
А	Discrete time discrete amplitude	1	
	Under which conditions does an initially relaxed system become		
Q	unstable?	L	
A	only if bounded input generates unbounded output	1	
A	only if bounded input generates bounded output	0	
A	only if unbounded input generates unbounded output	0	
A	only if unbounded input generates bounded output	0	
Q	A system is said to be defined as non causal, when	L	

	the output at the present depends on the input at an earlier		
A	time	0	
	the output at the present does not depend on the factor of		
A	time at all	0	
	the output at the present depends on the input at the future		
A	time only	0	
	the output at the present depends on the input at present ,past		
A	and future time	1	
Q	Which one of the following systems is dynamic system?	M	
A	y(n)=4x(n)	0	
A	y(n)=logx(n)	0	
A	y(n)=Acosx(n)	0	
A	y(n)=x(n)+x(n-1)	1	
Q	The system characterized by equation y(n)=ax(n)+b is	Н	
A	Linear for any value of b	0	
A	Linear if b>0	0	
A	Linear if b<0	0	
A	Non-linear	1	
Q	Which of the following is unstable system?	H	
A	y(n)=ex(n)	0	
A	y(n)=ax(n)+6	0	
A	y(n)=cosx(n)	0	
A	y(n)=x(n)+u(n)	1	
	What is the steady state value of The DT signal F (t), if it is		
Q	known that F(s) = 1/((s+2)2(s+4))?	Н	
Α	Jan-16	0	
В	32	0	
С	0	1	
D	01-Aug	0	
	Given that S1 and S2 are two discrete time systems. The false		
Q	statements are	L	

Α	If S1 and S2 are linear, then S is linear	0	
В	If S1 and S2 are non-linear, then S is non-linear	1	
С	If S1 and S2 are causal, then S is causal	0	
D	If S1 and S2 are time invariant, then S is time invariant	0	
	Decimation is a process in which the sampling rate is		
Q		L	
A	enhanced	0	
В	stable	0	
С	reduced	1	
D	Unpredictable	0	
Q	The product of two even or two odd function is	L	
Α	Even	1	
В	odd	0	
С	prime	0	
D	aliasing	0	
	The computational procedure for Decimation in frequency		
Q	algorithm takes	Н	
Α	Log2 N stages	1	
В	2Log2 N stages	0	
С	Log2 N2 stages	0	
D	Log2 N/2 stages	0	
	For 16 point DIT-FFT, number of complex multiplications		
Q	required are	L	
A	256	0	
Α	240	0	
A	32	1	
A	64	0	
	The number of stages in the computation of 32-point DFT by		
Q	radix -2 DIT FFT is	М	
A	2	0	
A	3	0	

A	4	0	
Α	5	1	
Q	Using radix 2, what is IFFT of X(k)={3, 1}	L	
A	{4, -2}	0	
Α	{2, 1}	1	
A	{4, 2}	0	
A	{1, 2}	0	
	What is the value of x(n)*h(n), 0≤n≤11 for the sequences		
	x(n)={1,2,0,-3,4,2,-1,1,-2,3,2,1,-3} and h(n)={1,1,1} if we perform		
Q	using overlap save fast convolution technique?	M	
A	{1,3,3,-1,1,3,5,2,-2,2,3,6}	1	
A	{1,2,0,-3,4,2,-1,1,-2,3,2,1,-3}	0	
A	{1,2,0,3,4,2,1,1,2,3,2,1,3}	0	
A	{1,3,3,1,1,3,5,2,2,2,3,6}	0	
	Overlap-Save Method we Insertzeros at the beginning of		
Q	the input sequence $x(n)$.	L	
A	M + N-1	0	
A	M + 1	0	
A	M – 1	1	
A	N-1	0	
Q	TMS 320C54x DSP processor consist of ALU.	L	
A	32 bit	0	
A	64 bit	0	
A	40 bit	1	
A	128 bit	0	
	The C54xx DSP has a deep instruction pipeline. These		
	stages of the pipeline are independent of each other, which		
Q	allows overlapping execution of instructions.	M	
Α	three - level	0	
Α	six-level	1	
Α	eight - level	0	

A	two - level	0	
	As a application of DSP processor in medical science , a		
	is used to eliminate 60 Hz interference in		
Q	electrocardiography (ECG) signal.	L	
Α	digital high pass filter	0	
A	digital notch filter	1	
A	digital low pass filter	0	
A	All pass filter	0	