University of Mumbai
 Examination 2020 under cluster 4 (PCE)

Program: BE Mechanical Engineering
Curriculum Scheme: Rev2012
Examination: Third Year Semester VI
Course Code: MEC606 and Course Name: Finite Element Analysis

Time: 1 hour
Note to the students: - All the Questions are compulsory and carry equal marks.

Q1.	The weight function of Galerkin method to solve a differential equation is
Option A:	Coefficients of constants in dependent variable
Option B:	
Option C:	Any polynomial expression
Option D:	-1
Q2.	In the given differential equation, $\mathrm{u}^{\prime}(3)=5$, is a $-\frac{d}{d x}\left[(x-1) \frac{d u}{d x}\right]=x^{2} ; 3 \leq x \leq 5$ $u(5)=10 \text { and } u^{\prime}(3)=5$
Option A:	Essential Boundary Condition
Option B:	Dirichlet boundary condition
Option C:	Homogeneous boundary condition
Option D:	Natural Boundary Condition
Q3.	The order of given differential equation is $-\frac{d}{d x}\left[(x-1) \frac{d u}{d x}\right]=x^{2} ; 3 \leq x \leq 5$
Option A:	0
Option B:	1
Option C:	2
Option D:	3
Q4.	The degree of given differential equation is $-\frac{d}{d x}\left[(x-1) \frac{d u}{d x}\right]=x^{2} ; 3 \leq x \leq 5$
Option A:	0
Option B:	1
Option C:	2
Option D:	3
Q5.	In the given differential equation, the primary variable is $-\frac{d}{d x}\left[(x-1) \frac{d u}{d x}\right]=x^{2} ; 3 \leq x \leq 5$
Option A:	X
Option B:	u
Option C:	d/dx
Option D:	du/dx

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Q6.	The shape function N1 at point with local coordinate 4 units for a 1D linear element of length 10 units is
Option A:	0.6
Option B:	0.4
Option C:	-0.6
Option D:	-0.4
Q7.	The governing equation for vertical bar is
Option A:	$\frac{d}{d x}\left[E A \frac{d u}{d x}\right]+f=0$
Option B:	$\frac{d}{d x}\left[E A \frac{d u}{d x}\right]=1$
Option C:	$\frac{d}{d x}\left[E A \frac{d u}{d x}\right]-f=0$
Option D:	$\frac{d}{d x}\left[E A \frac{d u}{d x}\right]=0$
Q8.	Which statement is not true for Global stiffness matrix
Option A:	Square matrix
Option B:	Symmetric matrix
Option C:	Singular Matrix
Option D:	Size of matrix depends on no. of nodes
Q9.	The variation of shape function as shown in the figure is for
Option A:	1D linear element
Option B:	1D quadratic element
Option C:	1D cubic element
Option D:	1D constant element
Q10.	Beam element is an
Option A:	1D element with 1DOF
Option B:	1D element with 2DOF
Option C:	2D element with1 DOF
Option D:	2D element with 2DOF
Q11.	The [B] matrix for 1D linear element is
Option A:	$\frac{1}{L}\left[\begin{array}{ll} -1 & 1 \end{array}\right]$

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Option B:	$\frac{E}{L}\left[\begin{array}{ll}-1 & 1\end{array}\right]$
Option C:	$\frac{1}{L}\left[\begin{array}{ll}1 \quad-1\end{array}\right]$
Option D:	$\frac{E}{L}\left[\begin{array}{ll}1 & -1\end{array}\right]$
Q12.	In weighted Residual technique, the residue is
Option A:	Minimized
Option B:	Maximized
Option C:	Kept constant
Option D:	Kept varying
Q13.	No. of nodes in 1D quadratic element is
Option A:	1
Option B:	2
Option C:	3
Option D:	4
Q14.	The value of natural coordinate varies from
Option A:	-1 to 2
Option B:	0 to 1
Option C:	1 to 2
Option D:	-1 to 1
Q15.	A 2D quadrilateral element with 4 nodes is a
Option A:	Linear quadrilateral element
Option B:	Quadratic quadrilateral element
Option C:	Cubic quadrilateral element
Option D:	Constant quadrilateral element
Q16.	The criteria for the polynomial function to attain convergence is
Option A:	The polynomial should be continuous and complete
Option B:	The polynomial should be continuous and incomplete
Option C:	The polynomial may or may not be continuous but complete
Option D:	The polynomial may or may not be complete but continuous
Q17.	The B matrix for a CST element is of order
Option A:	6×6
Option B:	3×3
Option C:	3×6
Option D:	6×3
Q18.	The Stress-Strain Relation (D) Matrix for Plane Stress Condition is

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Option A:	$\frac{E}{1-v^{2}}\left[\begin{array}{ccc}1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1-v}{2}\end{array}\right]$
Option B:	$\frac{E}{1-v^{2}}\left[\begin{array}{ccc}1 & V & 0 \\ V & 1 & 0 \\ 0 & 0 & \frac{1-2 v}{2}\end{array}\right]$
Option C:	$\frac{E}{(1+v(1-2 v)}\left[\begin{array}{ccc}1-v & v & 0 \\ v & 1-v & 0 \\ 0 & 0 & \frac{1-2 v}{2}\end{array}\right]$
Option D:	$\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}1-v & v & 0 \\ v & 1-v & 0 \\ 0 & 0 & \frac{1-v}{2}\end{array}\right]$
Q19.	The matrix that gives the relationship between two coordinate system is
Option A:	Displacement Matrix
Option B:	Jacobian Matrix
Option C:	Load Matrix
Option D:	Directional matrix
Q20.	The size of the global stiffness matrix with minimum number of nodes for the system shown below for a 1D analysis is
Option A:	3×3
Option B:	4×4
Option C:	5x5
Option D:	6x6
Q21.	The linear shape function at point P is

University of Mumbai
 Examination 2020 under cluster 4 (PCE)

Option A:	$0.1,0.9$
Option B:	$0.2,0.8$
Option C:	$0.3,0.7$
Option D:	$0.4,0.6$
Q22.	The Governing equation for free axial vibration of rod is given by
Option A:	$\mathrm{AE} \frac{\partial^{2} \mathrm{y}}{\partial \mathrm{x}^{2}}=\rho \mathrm{A} \frac{\partial^{2} \mathrm{t}}{\partial \mathrm{t}^{2}}$
Option B:	$\frac{1}{\mathrm{AE}} \frac{\partial^{2} \mathrm{y}}{\mathrm{x}^{2}}=\rho \mathrm{A} \frac{\partial^{2} \mathrm{t}}{\partial \mathrm{t}^{2}}$
Option C:	$\mathrm{AE} \frac{\partial^{2} \mathrm{y}}{\partial \mathrm{x}^{2}}=\frac{1}{\rho \mathrm{~A}} \frac{\partial^{2} \mathrm{t}}{\partial \mathrm{t}^{2}}$
Option D:	$\frac{1}{\mathrm{AE}} \frac{\partial^{2} \mathrm{y}}{\partial \mathrm{x}^{2}}=\frac{1}{\rho \mathrm{~A}} \frac{\partial^{2} \mathrm{t}}{\partial \mathrm{t}^{2}}$
Q23.	Analysis to determine natural frequency is
Option A:	Structural Analysis
Option B:	Thermal Analysis
Option C:	Fluid Analysis
Option D:	Modal Analysis
Q24.	Which of the element is a 2D element
Option A:	Bar Element
Option B:	Link Element
Option C:	CST Element
Option D:	Brick Element
	Q25.
Option A:	x, y
Option B:	\bar{x}, \bar{y}
Option C:	ξ, η
Option D:	r, θ

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Program: BE Mechanical Engineering
Curriculum Scheme: Rev2012
Examination: Third Year Semester VI
Course Code: MEC606 and Course Name: Finite Element Analysis
Time: 1 hour

Question	Correct Option (Enter either ' A ' or ' B ' or ' C ' or ' D ')
Q1.	A
Q2.	D
Q3.	C
Q4	B
Q5	B
Q6	A
Q7	A
Q8.	C
Q9.	C
Q10.	B
Q11.	A
Q12.	A
Q13.	C
Q14.	D
Q15.	A
Q16.	A
Q17.	C
Q18.	A
Q19.	B
Q20.	B
Q21.	B
Q22.	A
Q23.	D
Q24.	C
Q25.	C

