Program: BE Civil Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester VI

Course Code: CEC606 and Course Name: TRPC

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	The modular ratio m is given by	
Option A:	280/3 σcbc	
Option B:	280/3σst	
Option C:	280/5ocbc	
Option D:	280/σ cbc	
Q2.	For Fe 415 steel , permissible stress is	
Option A:	250 N/mm ²	
Option B:	150 N/mm ²	
Option C:	230N/mm ²	
Option D:	200N/mm ²	
Q3.	In Working Stress Method, which of the following relation is correct?	
Option A:	Working Stress ≤ Permissible Stress	
Option B:	Working Stress ≥ Permissible Stress	
Option C:	Working Stress = Permissible Stress	
Option D:	Working Stress > Permissible Stress	
Q4.	A T-beam behaves as a rectangular beam of a width equal to its flange if its	
	neutral axis	
Option A:	Remains within the flange	
Option B:	Remains below the slab	
Option C:	Coincides the geometrical centre of the beam	
Option D:	Remains above the web	
Q5.	In a single reinforced beam, if the permissible stress in steel reaches earlier than	
	that in concrete, the beam section is called	
Option A:	Over-reinforced section	
Option B:	Under-reinforced section	
Option C:	Economic section	
Option D:	Critical section	

Q6.	What is the moment of resistsnce of a beam?	
Option A:	Maximum moment carrying capacity	
Option B:	Minimum moment carrying capacity	
Option C:	Extra moment carrying capacity	
Option D:	Eccentric moment carrying capacity	
Q7.	For longitudinal reinforcing bars in column, the nominal cover should not be less	
	than	
Option A:	40mm,or diameter of longitudinal bar	
Option B:	50mm	
Option C:	30mm or diameter of longitudinal bar	
Option D:	60mm or diameter of longitudinal bar	
Q8.	In long column the formula for reduction coefficient is	
Option A:	Cr = 1.05 - leff/48b	
Option B:	Cr = 1.25 - leff/48b	
Option C:	Cr = 1 - leff/48	
Option D:	Cr = 1.5 - leff/48b	
Q9.	A short column 300 x 400mm has to carry a load of 1000 kN . Find the area of	
	steel if $6cc = 5 \text{ N/mm}^2$ and $6sc = 190 \text{ N/mm}^2$.	
Option A:	3000 mm ²	
Option B:	3210 mm ²	
Option C:	2000 mm ²	
Option D:	2162 mm ²	
Q10.	Calculate development length for a beam Tbd =0.6 N/mm ² and Est =140 N/mm ²	
Option A:	38 Ø	
Option B:	58.3 Ø	
Option C:	20 Ø	
Option D:	10 Ø	
Q11.	Shear reinforcement is to be provided when	
Option A:	τν = 0	
Option B:	Ţv<Ţc	
Option C:	Ţv>Ţc	
Option D:	Ţv =Ţc	
Q12.	In case of one-way continuous slab (L/d) ratio should not exceed	
Option A:	7	
Option B:	26	
Option C:	20	
Option D:	30	
Q13.	What is the Maximum diameter of bar for R.C slab having thickness D is	

	restricted to ?	
Option A:	D/4	
Option B:	D/5	
Option C:	D/6	
Option D:	D/8	
Q14.	R.C T-beam having clear length $L_0 = 12$ m is spaced at 3.25m with web of 0.4m	
	wide and 1m deep, supports flange slab of 100mm thick, the effective flange	
	width of beam will be	
Option A:	2m	
Option B:	3m	
Option C:	2.5 m	
Option D:	3.25m	
Q15.	The self weight of a foundation is assumed as	
Option A:	1%	
Option B:	5%	
Option C:	2%	
Option D:	10%	
Q16.	A square column of 400mm x 400mm is having an isolated footing of size 2m x	
	2m.Net upward soil pressure intensity is 250 KN/m ² .Calculate the maximum	
	B.M. acting on the footing.	
Option A:	260 kN-m	
Option B:	100 kN-m	
Option C:	160 kN-m	
Option D:	200 kN-m	
Q17.	In footing the critical section for punching shear shall be	
Option A:	At the face of the column .	
Option B:	At a perimeter section at distance of d/2 from the face of the column	
Option C:	At a distance of d from the face of the column	
Option D:	At the Edge of the footing	
Q18.	The phenomena of development of internal tensile stresses in a concrete	
	member by means of tensioning devices are called as	
Option A:	Pre-tensioning	
Option B:	Post tensioning	
Option C:	Pre stressing of concrete	
Option D:	Thermoelectric prestressing	
Q19.	Which of the following is categorized as long term loss of pre-stress in pre-	
	stressed concrete ?	
Option A:	Loss due to elastic shortening	
Option B:	Loss due to friction	
Option C:	Loss due to creep	

Option D:	Loss due to anchorage slip	
Q20.	A concrete beam of rectangular cross section of 200 mm X 400 mm is pre-	
	stressed with a force of 400kN at eccentricity of 100 mm. The maximum	
	compressive stress in the concrete is	
Option A:	12.5 N/mm ²	
Option B:	7.5 N/mm ²	
Option C:	5 N/mm ²	
Option D:	2.5 N/mm ²	
Q21.	As per IS: 1343: 2012, total shrinkage for a pre-tensioned beam is	
Option A:	3.0X 10- ²	
Option B:	3.0X10- ³	
Option C:	3.0X10- ⁴	
Option D:	3.0X10-5	
Q22.	A simply supported rectangular beam of length L with parabolic tendons with	
	zero eccentricity at support is prestressed with force P. The beam is carrying a	
	ULD of w kN/m. Neglecting self weight of the beam, the maximum dip at the mid	
	span to balance the external load should be	
Option A:	$e = \frac{wL^2}{wL^2}$	
	8P	
Option B:	$e = \frac{WP}{W}$	
	$8L^2$	
Option C:	$a - \frac{wL^2}{2}$	
	$e = \frac{1}{12P}$	
Option D:	a = wL	
	$e = \frac{1}{12P}$	
Q23.	the clear cover to cables in PSC post tension girder should not be less than	
Option A:	25mm	
Option B:	30mm	
Option C:	50mm	
Option D:	100mm	
Q24.	The locus of point of application of resultant in prestressing structure is	
	called	
Option A:	Cable line	
Option B:	Force line	
Option C:	Pressure line	
Option D:	Tension line	
Q25.	The zone of cross section if subjected to compressive load does not produce any	
	tensile stresses is called	
Option A:	Kern point	

Option B:	Center of gravity	
Option C:	Center of mass	
Option D:	Point of load application	

Program: BE Civil Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester VI

Course Code: CEC606 and Course Name: TRPC

Time: 1hour

Max. Marks: 50

Question	Correct Option
	(Enter either 'A' or 'B' or 'C' or 'D')
Q1.	А
Q2.	С
Q3.	А
Q4	А
Q5	В
Q6	А
Q7	А
Q8.	В
Q9.	D
Q10.	В
Q11.	С
Q12.	В
Q13.	D
Q14.	В
Q15.	D

Q16.	С
Q17.	В
Q18.	С
Q19.	С
Q20.	А
Q21.	С
Q22.	А
Q23.	С
Q24.	С
Q25.	А