Program: BE Civil Engineering

Curriculum Scheme: Revised 2012
Examination: Third Year Semester VI
Course Code: CEC606 and Course Name: TRPC

Time: 1hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	The modular ratio m is given by
Option A:	$280 / 3 \sigma \mathrm{cbc}$
Option B:	$280 / 3 \sigma \mathrm{st}$
Option C:	$280 / 5 \sigma \mathrm{cbc}$
Option D:	$280 / \sigma \mathrm{cbc}$
Q2.	For Fe 415 steel , permissible stress is
Option A:	$250 \mathrm{~N} / \mathrm{mm}^{2}$
Option B:	$150 \mathrm{~N} / \mathrm{mm}^{2}$
Option C:	$230 \mathrm{~N} / \mathrm{mm}^{2}$
Option D:	$200 \mathrm{~N} / \mathrm{mm}^{2}$
Q3.	In Working Stress Method, which of the following relation is correct?
Option A:	Working Stress \leq Permissible Stress
Option B:	Working Stress \geq Permissible Stress
Option C:	Working Stress = Permissible Stress
Option D:	Working Stress > Permissible Stress
Q4.	A T-beam behaves as a rectangular beam of a width equal to its flange if its neutral axis
Option A:	Remains within the flange
Option B:	Remains below the slab
Option C:	Coincides the geometrical centre of the beam
Option D:	Remains above the web
Q5.	In a single reinforced beam, if the permissible stress in steel reaches earlier than that in concrete, the beam section is called
Option A:	Over-reinforced section
Option B:	Under-reinforced section
Option C:	Economic section
Option D:	Critical section

	restricted to ?
Option A:	D/4
Option B:	D/5
Option C:	D/6
Option D:	D/8
Q14.	R.C T-beam having clear length $L_{0}=12 \mathrm{~m}$ is spaced at 3.25 m with web of 0.4 m wide and 1 m deep, supports flange slab of 100 mm thick, the effective flange width of beam will be
Option A:	2m
Option B:	3 m
Option C:	2.5 m
Option D:	3.25 m
Q15.	The self weight of a foundation is assumed as
Option A:	1\%
Option B:	5\%
Option C:	2\%
Option D:	10\%
Q16.	A square column of $400 \mathrm{~mm} \times 400 \mathrm{~mm}$ is having an isolated footing of size $2 \mathrm{~m} \times$ 2 m . Net upward soil pressure intensity is $250 \mathrm{KN} / \mathrm{m}^{2}$. Calculate the maximum B.M. acting on the footing.
Option A:	260 kN -m
Option B:	$100 \mathrm{kN}-\mathrm{m}$
Option C:	$160 \mathrm{kN}-\mathrm{m}$
Option D:	200 kN -m
Q17.	In footing the critical section for punching shear shall be
Option A:	At the face of the column .
Option B:	At a perimeter section at distance of $\mathrm{d} / 2$ from the face of the column
Option C:	At a distance of d from the face of the column
Option D:	At the Edge of the footing
Q18.	The phenomena of development of internal tensile stresses in a concrete member by means of tensioning devices are called as
Option A:	Pre-tensioning
Option B:	Post tensioning
Option C:	Pre stressing of concrete
Option D:	Thermoelectric prestressing
Q19.	Which of the following is categorized as long term loss of pre-stress in prestressed concrete?
Option A:	Loss due to elastic shortening
Option B:	Loss due to friction
Option C:	Loss due to creep

Option D:	Loss due to anchorage slip
Q20.	A concrete beam of rectangular cross section of $200 \mathrm{~mm} \times 400 \mathrm{~mm}$ is prestressed with a force of 400 kN at eccentricity of 100 mm . The maximum compressive stress in the concrete is
Option A:	$12.5 \mathrm{~N} / \mathrm{mm}^{2}$
Option B:	$7.5 \mathrm{~N} / \mathrm{mm}^{2}$
Option C:	$5 \mathrm{~N} / \mathrm{mm}^{2}$
Option D:	$2.5 \mathrm{~N} / \mathrm{mm}^{2}$
Q21.	As per IS: 1343: 2012, total shrinkage for a pre-tensioned beam is
Option A:	$3.0 \times 10{ }^{2}$
Option B:	3.0×100^{3}
Option C:	3.0×10^{-4}
Option D:	$3.0 \times 10-{ }^{5}$
Q22.	A simply supported rectangular beam of length L with parabolic tendons with zero eccentricity at support is prestressed with force P . The beam is carrying a ULD of $\mathrm{wkN} / \mathrm{m}$. Neglecting self weight of the beam, the maximum dip at the mid span to balance the external load should be
Option A:	$e=\frac{w L^{2}}{8 P}$
Option B:	$e=\frac{w P}{8 L^{2}}$
Option C:	$e=\frac{w L^{2}}{12 P}$
Option D:	$e=\frac{w L}{12 P}$
Q23.	the clear cover to cables in PSC post tension girder should not be less than
Option A:	25 mm
Option B:	30 mm
Option C:	50 mm
Option D:	100 mm
Q24.	The locus of point of application of resultant in prestressing structure is called
Option A:	Cable line
Option B:	Force line
Option C:	Pressure line
Option D:	Tension line
Q25.	The zone of cross section if subjected to compressive load does not produce any tensile stresses is called
Option A:	Kern point

Option B:	Center of gravity
Option C:	Center of mass
Option D:	Point of load application

Program：BE Civil Engineering
Curriculum Scheme：Revised 2012
Examination：Third Year Semester VI
Course Code：CEC606 and Course Name：TRPC
Time：1hour
Max．Marks： 50

ニニ＝

Question	Correct Option （Enter either＇A＇or＇B＇or ＇C＇or＇D＇）
Q1．	A
Q2．	C
Q3．	A
Q4	A
Q5	B
Q6	A
Q7	A
Q8．	B
Q9．	D
Q10．	B
Q11．	C
Q12．	B
Q13．	D
Q14．	B
Q15．	D

Q16.	C
Q17.	B
Q18.	C
Q19.	C
Q20.	A
Q21.	C
Q22.	A
Q23.	C
Q24.	C
Q25.	A

