Program: BE Electrical Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester VI

Course Code: EEC605 and Course Name: Control System II

Time: 1hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	An active ideal derivative compensator can be approximated	
Option A:	with a passive lead compensator.	
Option B:	with a passive lag compensator.	
Option C:	with a passive lag-lead compensator.	
Option D:	cannot be approximated	
Q2.	Compensating additional poles and zeros can be added at the	
Option A:	low-power end of the system before the plant	
Option B:	High power end of the system after the plant	
Option C:	In between the low and high power ends	
Option D:	Not possible to connect	
Q3.	Lag compensation permits again at low frequencies.	
Option A:	High	
Option B:	Low	

Option C:	Does not change the gain
Option D:	Medium
Q4.	The characteristic equation is $s3+14s2+(45+K)s+K = 0$, centroid is located at (-x,0) then the value of x is
Option A:	1
Option B:	2
Option C:	3
D:	
Q5.	For a unity feedback system with $G(s) = 10 / s^2$, what would be the value of centroid?
Option A:	0
Option B:	2
Option C:	5
Option D:	10
Q6.	If poles are added to the system, where will the system tend to shift the root locus?
Option A:	To the left of an imaginary axis
Option B:	To the right of an imaginary axis
Option C:	At the center
Option D:	No shifting takes place
Q7.	What should be the nature of root locus about the real axis?

Option A:	Assymetric	
Option B:	Symmetric	
Option C:	Exponential	
Option D:	Decaying	
Q8.	Which point on root locus specifies the meeting or collision of two poles?	
Option A:	Centroid	
Option B:	Break away point	
Option C:	Stability point	
Option D:	Anti-break point	
Q9.	For drawing root locus, the angle of asymptote yields the direction along which	branches approach to
Option A:	P+Z	
Option B:	P-Z	
Option C:	P/Z	
Option D:	P*Z	
Q10.	Compensator designed to yield the proper steady-state error with improved stability	
Option A:	lag compensator	
Option B:	lead compensator	
Option C:	lead lag compensator	

Option D:	Integrator
Q11.	If the gain of the open-loop system is doubled, the gain margin
Option A:	Is not affected
Option B:	Gets doubled
Option C:	Becomes half
Option D:	Becomes one-fourth
Q12.	The maximum phase shift of compensator $G(s) = 5(1+0.3s)/(1+0.1s)$ is
Option A:	20°
Option B:	30°
Option C:	45°
Option D:	60°
Q13.	Lead compensator and lag compensator are respectively
Option A:	Low pass and high pass filter
Option B:	High pass and low pass filter
Option C:	Both high pass filter
Option D:	Both low pass filters
Q14.	For a stable closed loop system, the gain at phase crossover frequency is

Option A:	< 20 dB
Option B:	< 6 dB
Option C:	> 6 dB
Option D:	> 0 dB
Q15.	In pole placement method of Controller design, at what location do we add the extra pole?
Option A:	a) at origin
Option B:	b) at the location of zero (if available) or very far from poles of the uncompensated system
Option C:	c) arbitrarily anywhere in the s-plane
Option D:	d) Any of the above
Q16.	In transformation method of Controller design, which of the following matrix is used to find the Transformation matrix?
Option A:	System matrix
Option B:	Observability matrix
Option C:	Controllability marix
Option D:	Output matrix
Q17.	In matching coefficient method of Controller design, the uncompensated system is generally of which order.
Option A:	first
Option B:	second

<u> </u>		
Option C:	third	
Option D:	on fourth	
Q18.	In Pole placement method of Observer design, the system matrix of uncompensated system is converted into w	
Option A:	tion Phase variable form	
Option B:	Controllable canonical form	
Option C:	Cascade form	
Option D:	Observer canonical form	
Q19.	Aliasing is caused when	
Option A:	Sampling frequency must be equal to the message signal	
Option B:	Sampling frequency must be greater to the message signal	
Option C:	Sampling frequency must be less than the message signal	
Option D:	Sampling frequency must be greater than or equal to the message signal	
Q20.	The use of sampled data control system are	
Option A:	For using analog components as the part of the control loop	
Option B:	For time division of control components	
Option C:	Whenever a transmission channel forms a part of closed loop	
Option D:	Whenever a transmission channel forms a part of open loop	

Q21.	Inverse z-transform of the system can be calculated using
Option A:	Partial fraction method
Option B:	Long division method
Option C:	Basic formula of Z-transform
Option D:	Synthetic division
Q22.	If all the poles have small magnitudes, then the rate of decay of signal is
Option A:	Slow
Option B:	Constant
Option C:	Rapid
Option D:	Fixed
Q23.	If one or more poles are located near the unit circle, then the rate of decay of signal is
Option A:	Slow
Option B:	Constant
Option C:	Rapid
Option D:	Fixed
Q24.	If the ROC of the system function is the exterior of a circle of radius $r < \infty$, including the point $z = \infty$, then the sy to be
Option A:	Stable

Option B:	Causal
Option C:	Anti causal
Option D:	Unstable
Q25.	A linear time invariant system is said to be BIBO stable if and only if the ROC of the system function
Option A:	Includes unit circle
Option B:	Excludes unit circle
Option C:	Is an unit circle
Option D:	cannot defined

Program: BE Electrical Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester VI

Course Code: EEC605 and Course Name: Control System II

Time: 1hour

Max. Marks: 50

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	А
Q2.	А
Q3.	А
Q4	В
Q5	А
Q6	В
Q7	В
Q8.	В
Q9.	В
Q10.	С
Q11.	А
Q12.	В
Q13.	В
Q14.	D
Q15.	В
Q16.	С
Q17.	В
Q18.	D

Q19.	С
Q20.	С
Q21.	А
Q22.	С
Q23.	А
Q24.	В
Q25.	А