University of Mumbai
 Examination 2020 under cluster 4 (PCE)

Program: BE Information Technology
Curriculum Scheme: Rev2016
Examination: Third Year Semester V
Course Code: ITDLO5012 and Course Name: Elective I: Image Processing

Time: 1 hour

Note to the students:- All the Questions are compulsory and carry equal marks.

Q1.	Which of the following is not an step in digital image processing
Option A:	Enhancement
Option B:	Segmentation
Option C:	Morphing
Option D:	Description
Q2.	Shape of an image is
Option A:	Triangle
Option B:	Circle
Option C:	Square
Option D:	Pentagon
Q3.	Is not a type of distance measure
Option A:	City Block
Option B:	Chess Board
Option C:	Euclidean
Option D:	Diagonal
Q4.	An n-bit gray scale image has maximum value of the pixel as
Option A:	$2^{\wedge} \mathrm{n}-1$
Option B:	$\mathrm{n}^{\wedge} 2-1$
Option C:	$\mathrm{n}^{\wedge} 2$
Option D:	$2^{\wedge} \mathrm{n}$
Q5.	Histogram matching also called as
Option A:	Histogram Equalisation
Option B:	Histogram Specification

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Option C:	Histogram linearisation
Option D:	Histogram modularisation
Q6.	In Homomorphic filtering, DFT uses
Option A:	Exponential operation
Option B:	Logarithmic operation
Option C:	Negative transformation
Option D:	Power operation
Q7.	Convolution and Correlation are functions of
Option A:	Connectivity
Option B:	Time
Option C:	Intensity
Option D:	Displacement
Q8.	Response of the gradient to noise and fine detail is
Option A:	Equal to
Option B:	Lower than
Option C:	Greater than
Option D:	Has no relation with
Q9.	Image transforms are associated with
Option A:	Pexel domain
Option B:	Spatial domain
Option C:	Space domain
Option D:	Frequency Domain
Q10.	Transform matrix of Hadamard is
Option A:	$\{1,1,1,1 ; 1,-1,1,-1 ; 1,1,-1,-1 ; 1,-1-1,1\}$
Option B:	$\{1,1,1,1 ; 1,-1,1,-1 ; 1,1,-1,-1 ; 1,-1-1,1\}$
Option C:	$\{1,1,1,1 ; 1,-1,-1,1 ; 1,1,-1,-1 ; 1,-1-1,1\}$
Option D:	$\{1,1,1,1 ; 1,-1,1,-1 ; 1,-1,-1,1 ; 1,-1-1,1\}$

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Q11.	Select the correct statement
Option A:	Hadamard sequency is ordered
Option B:	DFT gives energy compaction
Option C:	DCT is complex conjugate
Option D:	Transform matrix for $\mathrm{N}=2$ is same for all discrete image transforms
Q12.	Circular convolution of X1(n)=\{2,1,2,1\} and x2(n)=\{1,2,3,4\} is
Option A:	$14,14,16,16$
Option B:	$16,16,14,14$
Option C:	$2,3,6,4$
Option D:	$14,16,14,16$
Q13.	Arithmetic coding is work of
Option A:	Alan
Option B:	Elias
Option C:	Robert
Option D:	Joan
Q14.	Shannon's first theorem of coding is known as
Option A:	zero-memory
Option B:	entropy
Option C:	noiseless
Option D:	predictive
Q15.	LZW coding assigns
Option A:	fixed-length code words to variable length sequences of source symbols
Option B:	variable-length code words to fixed length sequences of source symbols
Option C:	fixed-length code words to fixed length sequences of source symbols
Option D:	variable-length code words to variable length sequences of source symbols
eliminates small holes d. reduce the thickness of an object	
transformation a. find patterns of pixels b. smoothes the contours of the image c.	

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Option B:	I-d, II-b, III-c, IV-a
Option C:	I-b, II-c, III-d, IV-a
Option D:	I-b, II-d, III-c, IV-a
Q17.	Select false statement
Option A:	erosion enlarges holes
Option B:	dilation fills the holes
Option C:	dilation expands the boundary
Option D:	erosion expands the boundary
Q18.	It is not a method of segmentation
Option A:	line
Option B:	point
Option C:	edge
Option D:	area
Q19.	Order of shape number for a closed boundary is
Option A:	Odd
Option B:	Even
Option C:	Any positive value
Option D:	Prime
Q20.	Which of the following is used for edge detection
Option A:	first derivative
Option B:	second derivative
Option C:	third derivative
Option D:	fourth derivative
O21.	Statistical moments are sensitive to rotation.
Option A:	Statistical moments are a boundary is one of the boundary descriptors.
quantitatively.	

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Option D:	Shape number is a unique representation of an image.
Q22.	Pseudo colors are known as
Option A:	primary colors
Option B:	secondary colors
Option C:	false colors
Option D:	true colors
Q23.	Color of an object is determined by the light
Option A:	absorbed
Option B:	reflected
Option C:	refracted
Option D:	transmitted
Q24.	Lossy compression techniques are useful in
Option A:	Military imaging
Option B:	Space imaging
Option C:	Medical imaging
Option D:	Television broadcasting
Q25.	Bit plane slicing generally can not be used for
Option A:	Steganography
Option B:	Enhancement
Option C:	Compression
Option D:	Transforms

University of Mumbai
 Examination 2020 under cluster 4 (PCE)

Program: BE Information Technology
Curriculum Scheme: Rev2016
Examination: Third Year Semester V
Course Code: ITDLO5012 and Course Name: Elective I: Image Processing Time: 1 hour

Max. Marks: 50

Question	Correct Option (Enter either 'A' \mathbf{A}^{\prime} ' \mathbf{B} or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	C
Q2.	C
Q3.	D
Q4	A
Q5	B
Q6	B
Q7	D
Q8.	B
Q9.	D
Q10.	A
Q11.	D
Q12.	D
Q13.	B
Q14.	C
Q15.	A
Q16.	C
Q17.	D
Q18.	D
Q19.	B
Q20.	A
Q21.	C
Q22.	C
Q23.	D
Q24.	D
Q25.	

